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Abstract

Erosion, a surface process, can be quantified over long-term (assumed to be the
natural erosion rate of the landscape) and contemporary (modern) timeframes. My research
used the rare cosmogenic isotope °Be in sand and cobbles collected from rivers in
southeastern Brazil (Santa Catarina and Rio de Janeiro states) and southwestern China
(Yunnan province) to quantify long-term, background rates of erosion and sediment
supply. These measurements will also increase number of such measurements in tropical
and subtropical climates. | assessed the relationship between landscape parameters
(topographic and climatic) and background erosion rates in order to understand factors
related to erosion.

My data from so far unsampled states in Brazil shows that background erosion rates
range between 13 and 90 m/Myr. | found that mean basin slope (R?=0.73) and mean annual
precipitation (R?=0.57) are strongly correlated to erosion rates. Steep, escarpment-draining
basins in Brazil erode faster than lower gradient basins draining the highlands. Comparing
the isotopic concentration of river sand and cobbles, my data show that these grain sizes
are sourced from different parts of the landscape. I compiled all published Brazilian
cosmogenic 1°Be data, and compared them to erosion rates from similar tectonic settings.
While the erosion rates in Brazil are relatively low, they are similar to those in southeastern
North America, but faster than rates measured on escarpments in southern Africa.

In China, | tested the human effects on denudation by comparing long-term erosion
rates derived from in-situ °Be concentration and the modern sediment yield of 22
watersheds in Yunnan. Background erosion rates range between 17 and 386 m/Myr; long
term sediment yields based on these erosion rates range from 79 to 893 tons km2 yr?.
Modern sediment yields range from 90 to 2,879 tons km2 yr? (data from Schmidt et al.,
2011). In most watersheds, the modern sediment yield is 2-3X higher than long-term rates,
likely the effect of a long history of land use in Yunnan. | found a statistically significant,
positive relationship between erosion rates and both area (R? = 0.60) and mean basin slope
(R? = 0.42). There is a negative but strong relationship between erosion rates and
precipitation in my dataset (R? = 0.60). | sampled some places where °Be samples had
been collected before to test the methodological assumption of time-invariant °Be
concentration. Concentrations generally agree on samples taken 6 months apart and in
samples from the active channel and from floodplains, but not in samples collected a
decade and centuries apart.
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Chapter 1 - Introduction

Erosion is a natural processes, but its rate has been increased dramatically by
humans (Enters, 1998; Hooke, 1994; Hooke, 2000; Reusser et al., 2015). Natural resources
and many aspects of our livelihoods can be impacted by erosion including, water quantity
and quality (Bilotta and Brazier, 2008), reservoir lifespan (Harden, 2006, Owens et al.,
2005), aquatic ecology (Owens et al., 2005), and agriculture (Pimentel et al., 1995;
Pimentel, 2006). The magnitude of these effects can be reduced with efficient
environmental management. To craft such effective management techniques, knowledge
of background erosion rates and dominant landform processes is necessary.

Several terms are associated with the removal of material from hillslopes and its
movement through, and out of a watershed. Ritter and others (1995) defined sediment
generation as the amount of sediment reaching or given access to a channel and sediment
yield as the sediment that exits the basin. Their work also defined erosion rate as the pace
at which material is removed from the basin. Although denudation and erosion are often
used interchangeably, denudation accounts for the sum of the overall erosive process over
long term (Summerfield and Hulton, 1994). Erosion accounts for the mechanical erosive
processes that remove solid material, while denudation also accounts for chemical
weathering resulting in a dissolved load.

Erosion rates are influenced by natural factors such as geology, slope, and climate
but can increase dramatically due to human activities (Ouyang et al., 2010). Averaged long-
term (up to 10*-10° years), background erosion rates estimated with cosmogenic °Be are
assumed to be affected only by natural factors (Brown et al., 1995; Bierman and Nichols,
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2004; von Blanckenburg, 2005). These erosion rates serve as a benchmark for land
management (Vanacker et al., 2007). Contemporary erosion rates can be quantified using
several methods, including river gauges (e.g. Clapp et al., 2000; Hewawasam et al., 2003,
Reusser et al., 2015) and sedimentation rate of reservoirs (e.g. Vanacker et al., 2007).
Comparison of erosion rates over both timeframes, allows for the quantification of the

human effects on the environment and surfaces processes.

Obijectives:

My field areas are located in tropical and subtropical regions of Brazil and China.
Because the objectives for each project are different, | consider the objectives for each
project separated by country in this section. Quantifying background erosion rates in both
Brazil and China increased the number of cosmogenic nuclide measurements in tropical
and subtropical climates. As noted by Portenga and Bierman (2011), although cosmogenic
nuclides have been widely used as a method for estimating background erosion rates, their
use in tropical environments has been limited. Out of the 1149 samples included in their
compilation, only 98 were from tropical watersheds. Studies using cosmogenic nuclides,
not included in Portenga and Bierman (2011), with tropical field sites include Puerto Rico
(Brocard et al., 2014a; Brocard et al., 2014b), Brazil (Salgado et al., 2006; Salgado et al.,
2007; Salgado et al., 2008; Salgado et al., 2013; Cherem et al., 2012a; Cherem et al., 2012b;
Barreto et al., 2013, Barreto et al., 2014; Rezende et al., 2013), and the tropical regions of

Africa (Hinderer et al., 2013) and Australia (Lal et al., 2012) have been published.



Brazil:

Using in situ 1°Be concentrations of active channel sediments in Rio de Janeiro and
Santa Catarina, Brazil, | constrained background erosion for 14 basins. | assessed the
relationship of erosion rates to landscape scale variables. With this information, | placed
erosion rates of the Atlantic Forest of Brazil in the context of other tropical places and
passive margin areas, where cosmogenic 1°Be has been used as an erosion rate monitor. |
expect these data to be used to inform the establishment of a payment for ecosystem
services (PES) program in Santa Catarina State. This is a novel application of cosmogenic
geomorphology to the environmental conservation field.

In order to understand the difference in material sourcing to the river during mass
movements and rainy events, | compared the isotopic concentration of river channel
sediment and river cobbles in 3 sites in Rio de Janeiro. If the concentrations do not differ
greatly, both river sand and cobbles are sourced from similar parts of the landscape.
China:

| measured in situ and meteoric °Be in 70 samples from Yunnan, China; of these
samples 40 are from active river channel sediment and 30 are from overbank samples and
two were supplied from previous sampling campaigns. My work also included temporal
replicates to test the method assumption of time-invariant °Be concentration. The
(original) concentrations | compared to had been analyzed and reported by Neilson (2015)
and Schmidt and others (2011).

Using the in situ isotopic concentration, | estimated background erosion rates in all

the basins we sampled (see Lal, 1991), and assessed the relationship between erosion and



landscape-level variables. We measured meteoric '°Be for these samples, and used these
isotopic concentration to calculate the erosion index for each watershed (as per Brown et
al., 1988).

| calculated the erosion index and atmospheric deposition rate of meteoric 1°Be for
each basin using both contemporary sediment yields. | used official data from the Chinese
Government which integrates over decades, as the contemporary sediment yields. Water
quality parameters, including sediment yield, have been measured daily for at least 5 years
in the sampled watersheds, by the Ministry of Hydrology of the People’s Republic of
China. The sediment yields | used have been calculated from these data and published by
Schmidt et al., 2011.

One of the fundamental assumptions of the method that constrains erosion rates
using isotopic concentrations was evaluated in my work. °Be concentration is assumed to
be time-invariant, and thus representative of average erosion rates over long periods of
time. | compared the isotopic concentration of samples taken at the same site 6 months,
and roughly a decade apart. Using radiocarbon ages for charcoal on alluvial terraces, and
sand from the same stratum, | compared °Be; centuries over centennial timescales. To
understand if the monsoon dominates sediment sourcing in Yunnan rivers, | compared the
isotopic concentration of material in the active channel and material deposited on
floodplains. The assumption behind this test is that the active channel material is
transported with base flow of the river, and material deposited overbank is deposited during

the monsoon season, when the rivers rise.



Dissertation structure:

The remainder of this chapter contains a literature survey, including the most
important and relevant sources of information related to my work. Chapters 2 is the
manuscript that covers the findings of my research in Brazil. This paper has been accepted
for publication in Geomorphology. Chapter 3 is the most recent draft of the manuscript that
presents the findings of my research in China. The chapter is formatted according to the
guidelines of Earth and Planetary Science Letters, the journal it will be submitted to this
spring. Because of this, the erosion rates in chapter 3 are expressed in different units than
the rest of the dissertation. Finally, Chapter 4 includes my conclusions and suggestions for

future work.
Literature survey

Cosmogenic °Be

Cosmogenic nuclides were first suggested as a method to determine background basin-
scale erosion rates in the 1990’s (Brown et al., 1995; Bierman and Steig, 1996; Granger et
al., 1996). In situ cosmogenic isotopes (I used '°Be) are formed when rocks and sediment
are exposed to secondary cosmic rays at and near Earth’s surface (Lal and Peters, 1967);
such isotopes accumulate over the exposure time. The formation rate of these isotopes
decreases with depth, and is generally insignificant below a depth of 2 meters (Lal and
Peters, 1967). Because of this formation process, the concentration of °Be is a good
indicator of near-surface residence time, and of denudation rates which are inversely
related to isotopic concentrations. The method used to derive denudation rates from

cosmogenic isotope concentrations in river sediment assumes that the rate of erosion is



steady over the time period integrated, that sediment sourcing is steady, and that sampled
sediment is representative of the erosion of the entire basin (see Brown et al., 1995,
Bierman and Steig, 1996 and Granger et al., 1996 for the assumptions of the method). The
integration time depends on erosion rate: for fast erosion rates, sediments spend little time
in the upper meters of the soil (in situ 1°Be production zone), whereas in a slowly eroding
watershed, sediments spend more time in the nuclide production zone.

Background erosion rates can be used to address issues raised in policy, land
management, and ecological economics debates. Considering geologic (background)
erosion rates when designing policy and land management regulations will make these
approaches more realistic. In terms of agriculture, these erosion rates can be used to plan
where the fields will be located or what will be grown. Growing crops that cause less loss
of the top soil, and locating fields in areas that are less prone to erosion can save both
money and time.

Meteoric 1°Be forms in the atmosphere as the result of the spallation (splitting) of nitrogen
and oxygen atoms (Lal and Peters, 1967). Once formed in the atmosphere, the isotope
adheres to aerosols and is delivered to the surface typically in rainfall, but can also be
deposited as dry fall (McHargue and Damon, 1991). The concentration of meteoric 1°Be in
precipitation is a function of latitude and movement of the isotope from the atmosphere to
the troposphere (McHargue and Damon, 1991). Graly and others (2011) published a
method to calculate the meteoric °Be delivery rate, accounting for mean annual
precipitation and latitude. Most meteoric °Be can be found in the upper few meters of soil

(Pavich et al., 1984; Pavich et al., 1985). It has been used as a sediment tracer at the



watershed level (see Reusser and Bierman, 2010) and to estimate the rate of soil transport

(see Jungers et al., 2009) among other uses.

Erosion Index

Another approach to study surface material transport is to calculate the erosion index of a
watershed. Brown and others (1988) defined the erosion index as the ratio of meteoric 1°Be
leaving the basin to that deposited on it. The equation to calculate erosion index is

MI
=1
Aq

Where M is the annual sediment load, i’ is the 1°Be concentration in the material leaving
the basin, A is the basin area, and q is the atmospheric deposition rate of °Be in the
watershed. | calculate the g value for each watershed, using the equation published by

Graly and others (2011):

1.44
q="P | EXPB07 = 1) +0.63 Equation 2
436

Where L is the latitude in which the watershed is located and P the mean annual
precipitation rate.

If a basin is in steady state (erosion and soil formation), then the amount of °Be leaving
the basin is similar to that being deposited (Brown et al., 1988). If on the other hand, the
index has a value over one, it means the basin is eroding more quickly than soil is being
produced, in other words, more °Be is leaving the basin, than it is being deposited by
precipitation. The erosion index provides an important piece of information for evaluating

land management practices, because it informs us about the balance between soil formation
7



and erosion. This information is key when considering restoration projects, conservation
and future land uses that could tip the erosion index either way (greater or smaller than

one).

Sediment vield data

The Ministry of Hydrology of the People’s Republic China has been collecting data daily
on water quality parameters in the International Rivers of Yunnan and Tibet region since
the 1950s (Schmidt et al., 2011). Such a complete record of sediment loading is very rare,
and provides a strong underpinning to erosion and water quality research in the region.
Two measured parameters are total suspended sediment concentration and water discharge,
which can be used to calculate sediment yield at each station. These data were collected
from 1953 to 1989, but | use data from up to 1987. Data after 1987 is not publicly available,
and some stations have sediment data starting in 1958 or later, so | use the years available
for each station. The data were collected from the government documents, translated, and
compiled in a database described by Henck et al (2010), and published at:

http://www.oberlin.edu/faculty/aschmidt/chdp/index.html. Sediment yields, based on

these data, have been calculated and published in Schmidt et al., (2011).

Payment for Ecosystem Services

One approach to environmental conservation adopted in recent years is to share the costs
of conserving the land; those who benefit from the ecosystem services rendered by the

conserved land pay a fee to the land owner. Pfaff and others (2008) define payment for


http://www.oberlin.edu/faculty/aschmidt/chdp/index.html

ecosystem services as an effective way to induce conservation while compensating those
who incur its costs.

The need to shift conservation (and conservation policy) approaches from experience-
based to knowledge-based has been discussed by several authors (e.g. Ferraro and
Pattanayak, 2006; Pullin and Knight, 2001; Sutherland et al., 2004; Pfaff et al., 2008). They
all agree on the need for evaluation and a more scientific (data-based) approach to
conservation practices. It is here where geomorphology, through cosmogenic nuclides, can
be integrated with conservation. Quantifying background erosion rates for places where a
Payment for Ecosystem Services (PES) scheme will be installed, can serve as a benchmark
to assess policy effects on contemporary erosion rates. These data will be useful when
monitoring the ecosystem and assessing the effects of the PES on the overall health of the

ecosystem.



Chapter 2 - Long-term, background denudation rates of southern and southeastern

Brazilian watersheds estimated with cosmogenic 1°Be

Abstract

In comparison to humid temperate regions of the Northern Hemisphere, less is
known about the long-term (millennial scale), background rates of erosion in Southern
Hemisphere tropical watersheds. In order to better understand the rate at which watersheds
in southern and southeastern Brazil erode, and the relationship of that erosion to climate
and landscape characteristics, we made new measurements of in situ produced '°Be in river
sediment and we compiled all extant measurements from this part of the country.

New data from 14 watersheds in the states of Santa Catarina (n=7) and Rio de
Janeiro (n=7) show that erosion rates vary there from 13 to 90 m/My (mean = 32 m/My;
median=23 m/My) and that there is no significant difference between erosion rates of
basins we sampled in the two states. Sampled basin area ranges between 3 and 14987 km?,
mean basin elevation between 235 and 1606 m, and mean basin slope between 11 and 29°.
Basins sampled in Rio de Janeiro, including three that drain the Serra do Mar escarpment,
have an average basin slope of 19°, whereas the average slope for the Santa Catarina basins
is 14°. Mean basin slope (R>=0.73) and annual precipitation (R*=0.57) are most strongly
correlated with erosion in the basins we studied. At three sites, where we sampled both
river sand and cobbles, the '°Be concentration in river sand was greater than in the cobbles

suggesting that these grain sizes are sourced from different parts of the landscape.
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Compiling all cosmogenic '°Be-derived erosion rates previously published for
southern and southeastern Brazil watersheds to date (n = 76) with our 14 sampled basins,
we find that regional erosion rates, though low, are higher than those of watersheds also
located on other passive margins including Namibia and the southeastern North America.
Brazilian basins erode at a pace similar to escarpments in southeastern North America.
Erosion rates in southern and southeastern Brazil are directly and positively related to mean
basin slope (R? = 0.33), and weakly but significantly to mean annual precipitation (R? =
0.05). These relationships are weaker when considering all southern and southeastern
Brazil samples, than they are in our smaller, localized dataset. We find that smaller, steeper
headwater catchments (many on escarpments) erode faster than the larger, higher-order but
lower slope catchments. Erosion in southern and southeastern Brazil appears to be

controlled largely by mean basin slope with lesser influence by climate and lithology.

Introduction

Since the mid-1990s, cosmogenic nuclides, most commonly !°Be, have been widely
used as a method to measure long-term, background, millennial scale erosion rates
(Bierman and Steig, 1996; Brown et al., 1995; Granger et al., 1996). Portenga and Bierman
(2011) compiled all published '°Be-derived erosion rates and recalculated the erosion rates
using the CRONUS online erosion calculator (http://hess.ess.washington.edu/) to
standardize the measurements and allow for comparison of erosion rates among sites
worldwide. Although the method has been applied in all climate regimes, its usage in

tropical, subtropical, and arctic landscapes is minimal compared to applications in dry and
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temperate climates. Out of 1149 samples included in that compilation, only 98 were
collected from the tropics.

Studies not included in Portenga and Bierman (2011), with data from tropical areas
(such as Puerto Rico, Africa, and Australia), include several from Brazil (Brocard et al.,
2014a, Brocard et al., 2014b; Salgado et al., 2006; Salgado et al., 2007; Salgado et al.,
2008; Salgado et al., 2013; Cherem et al., 2012; Barreto et al., 2013, Barreto et al., 2014;
Rezende et al., 2013; Hinderer et al., 2013; Lal et al., 2012; Nichols et al., 2014). Of the
eight papers that have used '°Be to decipher Brazilian landscapes, seven report samples
collected from Minas Gerais state and one reports on samples from Parana state. Erosion
rates in these papers are calculated using a variety of different scaling and production
parameters and thus are not directly comparable.

In this paper, we both provide new data (from the so-far unsampled Brazilian states
of Santa Catarina and Rio de Janeiro) and we compile and reanalyze using a homogeneous
approach all extant in situ produced '’Be data for southern and southeastern Brazil. The
goals of this paper are both to understand better the range and central tendency of erosion
rates in southern and southeastern Brazil and to determine whether those rates are related
to topographic and climatic variables such as slope and precipitation. Such data are
important for land management in rapidly developing, but still agriculturally intensive,
nations like Brazil (Martinelli et al., 2010). Long-term, background erosion rates, such as
those we provide here, are useful as a benchmark against which to compare contemporary
rates of erosion and sediment transport driven by human-induced change (Reusser et al.,

2015; Brown et al., 1998; Hewawasam et al., 2003; Vanacker et al., 2007).
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Geologic, tectonic, and climatic setting of Rio de Janeiro and Santa Catarina states

Rio de Janeiro and Santa Catarina states are located close to the Atlantic coast in
southeastern and southern Brazil and are mostly underlain by high-grade metamorphic
rocks (Dominguez, 2009). Both states have escarpment topography parallel to the coast,
associated with the South American plate passive margin that separates lower coastal plains
from higher interior plateaus (Ollier, 2004; Dominguez, 2009). The state of Rio de Janeiro
is mostly mountainous and mainly underlain by gneisses and granites (Heilbron et al.,
2008; Fernandes et al., 2010; Silva et al., 2015). The eastern part of Santa Catarina state is
occupied by Atlantic lowlands and the southern Brazilian highlands (Behling, 1995)

(Figure 2.1).

Elevation (m)

=== Serra do Mar Escarpment

This study
B 050 ,
. Previous Brazil studies = = Serra Geral
I eco- 000 Paraiba do Sul watershed
araiba do Sul watershe — 3 T
[: 1,600 - 2,400 Atlantic coastal plains
Itajai-Agu watershed » .
[ ] 2400-3200 Brazilian highlands

Figure 2.1: Topographic and geographic features of southern and southeastern Brazil. The states of Minas
Gerais (MG), Goias (GO), Espirito Santo (ES), Rio de Janeiro (RJ), Sdo Paulo (SP), Parana (PR), and
Santa Catarina (SC) are shown. (A) Sample locations for this study and previously published cosmogenic
studies in Brazil. The escarpment topography can be distinguished along the Atlantic coast by the change
in elevation. (B) Approximate location of major geographic and political features of southern and
southeastern Brazil.
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The Serra do Mar escarpment is mostly composed of gneisses, granites, and
migmatites (Heilbron and Machado, 2003; Silva et al., 2015) intruded by Mesozoic diabase
dikes (Almeida et al., 2013; Guedes et al., 2005). Normal faults of Mesozoic-Cenozoic age
raised and lowered tectonic blocks, topographically partitioning the area (Fernandes et al.,
2010). One of these raised blocks, the Serra do Mar escarpment, may represent a
Cretaceous South Atlantic rift border (Gallagher et al., 1995; Almeida and Carneiro, 1998)
or the retreat of a dissected Cenozoic fault scarp (Asmus and Ferrari, 1978). The dissection
increased during Paleogene and Neogene tectonic and thermal reactivations, causing
subsidence or uplift of earlier erosional surfaces (Zalan and Oliveira, 2005; Hackspacher
et al., 2004). The topography is the result of differential chemical and physical denudation
of the gneisses and granites, which are intersected by subvertical faults and fractures that
accelerate channel incision; as well as landslides and rock falls along the fractured walls
(Fernandes et al., 2010).

Rio de Janeiro and Santa Catarina experience high average humidity and
temperatures along the coast, and more stable and lower temperatures in the highlands
(Williams, 1962; Nunes et al., 2009). Based on the K&ppen-Geiger climate classification,
Rio de Janeiro has a tropical climate, with a dry season in the winter (Aw) along the coast,
and warm temperatures along with dry winters (Cw) towards the interior (Alvares et al.,
2013). Temperatures reach their maximum between January and February (29°C), and
minimum in June and July (21°C) (Brickus et al., 1998), with mean annual temperature
around 23°C (Nunes et al., 2009). Rio de Janeiro state receives between 1200 and 2000

mm rainfall annually (Alvares et al., 2013; de Sherbinin and Hogan, 2011; Nunes et al.,
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2009). Santa Catarina state has a steady warm and moist climate with precipitation in all
months (Cfa), and a temperature over 22°C during its warmest month based on the K&ppen-
Geiger system (Alvares et al., 2013; Behling, 1995). Mean temperatures range from 14°C
in the winter to 23°C in the summer (annual mean of 19°C), the relative humidity remains
around 85% year round, and precipitation varies between 1250 and 1400 mm annually

(Alvares et al., 2013).

Previous work measuring denudation rates in Brazil

There have been eight published studies of erosion rates in southeastern Brazil,
some of which report the subsets of the same data using different nomenclature. Salgado
et al. (2006) used '°Be to compare chemical weathering and long-term denudation rates in
Minas Gerais, Brazil (see Figure DR1 for watershed locations). They found that both
chemical weathering and denudation were the highest in marbles, intermediate in schists,
phyllites, granites, gneisses and migmatites, and lowest in quartzites. A later study by
Salgado et al. (2008) in the same region provided more evidence consistent with
differential erosion; watersheds underlain by quartzites and itabirites (banded iron
formations) eroded more slowly than those underlain by other lithologies.

Barreto et al. (2013) measured denudation in watersheds draining three different
escarpments in Minas Gerais, Brazil and found that they all eroded slowly, from 2 to 6
m/My (Figure DR2). In another study, Salgado et al. (2007) measured erosion rates in sub-
basins underlain by schist, phyllite, granite, and gneiss (a subset of the lithologies included

in their 2008 publication) and found no difference in erosion due to lithology, but rather
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that slope dissection controlled the rate of denudation in Minas Gerais (Figure DR1).
Rezende et al. (2013) also found differences in denudation based on lithology; their work
measured background erosion rates of nine sub-basins along the drainage divide between
the Grande and Paraiba do Sul Rivers in Minas Gerais (Figure DR3). They measured
erosion rates between 7 and 28 m/My, with the slowest rates in watersheds underlain by
granite (Rezende et al. 2013).

Two studies compared denudation rates of watersheds draining the Serra do Mar
(in Parana state) and the Serra da Mantiqueira (in Minas Gerais state close to the border
with Rio de Janeiro) escarpments to watersheds draining the highlands (Salgado et al.,
2013; Cherem et al, 2012) (Figure DR1, Figure DR4). Both studies found that escarpment-
draining watersheds eroded at a significantly faster pace than the watersheds draining the
highlands. Rezende at al. (2013), also working in Serra da Mantiqueira, compared
denudation rates at the divide between the Grande (a tributary of the Parana River) and the
Paraiba do Sul river basins at the southern border of Minas Gerais state. Their work found
that basins draining the escarpment erode faster than those draining the highlands. Barreto
et al. (2014) examined the effects of diamond extraction on denudation rates. They found
that drainages overloaded with material resulting from mining saprolite upstream had
higher apparent denudation rates than unaffected streams, likely because mining

introduced material from well beneath the surface into the streams.

Methods
We collected 14 active channel sediment samples in two different field seasons.

Rio de Janeiro watersheds (n=7) were sampled in 2011 and Santa Catarina watersheds
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(n=7) in 2012 (Figure 2.2). We also sampled river cobbles at three Rio de Janeiro sites

where we sampled active channel sediments (BRAO1, 02, 03).

Figure 2.2: Sampling sites. Field photographs of two fluvial sediment sampling sites: (A) BRAO2 in Rio
de Janeiro state, draining the Serra do Mar escarpment. (B) BRA43 in Santa Catarina state. All samples
were field sieved.

All watersheds we sampled in Rio de Janeiro state are sub-basins of the Paraiba do
Sul basin (Figure 2.1), with the exceptions of three samples (BRAOI, 02, 03) that were
collected in coastal watersheds that drain the escarpment of the Serra dos Orgdos (a local
name for the Serra do Mar). Four samples (BRA19, 20, 21, 22) come from watersheds
where most of the catchment area is located in Minas Gerais state, which drains the Serra
da Mantiqueira. Basin area ranges from 3 to 9169 km? The watersheds are mostly
underlain by deformed and metamorphosed gneiss and granitic rocks. Mean elevation for
the Rio de Janeiro basins is between 235 and 1606 m, average basin slope ranged between
12 and 29°, and mean annual precipitation is between 1215 and 1824 mm.

The Santa Catarina watersheds we sampled, all located within the Itajai-Acu basin,
drain the Serra Geral, which extends to the southern part of Santa Catarina state (Figure

2.1). Sampled watersheds have areas between 5 and 14987 km?, with mean basin elevations
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ranging from 293 to 695 m, and mean basin slopes between 11 and 17°. The watersheds
receive between 1484 and 1649 mm of precipitation annually. Three of the watersheds are
underlain by granite-gneiss-migmatite-granulite complexes, and four are underlain by
sedimentary sequences.

Sediments were field-sieved to 250-850 pm and river cobbles were crushed and
sieved to the 250-850 um fraction at the University of Vermont. Quartz from the samples
was isolated and purified through a series of hydrochloric, hydrofluoric, and nitric acid
etches, a modification of the method of Kohl and Nishiizumi (1992). Clean quartz was
dissolved in hydrofluoric acid after the addition of a *Be carrier created from beryl in the
University of Vermont cosmogenic nuclide laboratory. Beryllium was isolated through
successive anion and cation exchange extractions, and precipitated as Be hydroxide
(Corbett et al., 2016). The hydroxide was dried, burned, and packed into copper cathodes
after being mixed with niobium. Samples were analyzed by Accelerator Mass
Spectrometry (AMS) at the Scottish Universities Environmental Research Centre
(SUERC) in East Kilbride, Scotland (Xu et al., 2010) and normalized to the NIST standard
with an assumed '’Be/’Be ratio of 2.79 x 107! (Nishiizumi et al, 2007). Background
correction was done using full process blanks run with each batch of 10 samples; the final
uncertainty of the ratio is the uncertainty of the isotopic measurement and the blank

propagated in quadrature.

All erosion rates (both for our new data and for data from the literature) were
calculated using the CRONUS online calculator version 2.2
(http://hess.ess.washington.edu/), the global production rate, and the time invariant Lal
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(1991)/Stone (2000) scaling scheme (see Table DR1 for CRONUS input). The calculator
requires an elevation and latitude representative of the basin from which the sediment is
sourced. We typically generate these values following the approach of Portenga and
Bierman (2011). However, in some cases, despite extensive communication with the
authors of other published Brazilian studies, it was not possible to determine precisely their
sampling locations; because of this uncertainty, we used the average elevation of each
watershed and its centroid latitude and longitude to calculate the erosion rates we report
here. As a sensitivity test, we compared CRONUS-calculated erosion rates for the 14 basins
we sampled using effective elevation (c.f., Portenga and Bierman, 2011) and mean
elevation. We find on average, less than a 10% difference (Figure 2.3). Because of this
similarity, we used centroid location and mean basin elevation to calculate the erosion rate

of all watersheds considered in this paper.
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Figure 2.3: Erosion rates calculated using different parameter values. Regression of erosion
rates calculated using the basin effective elevation and centroid location (X-axis) and
calculated using mean basin elevation and centroid location (Y-axis) are very similar.
Shaded zone represents the 95% confidence interval.
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Climatic variables were extracted from the WorldClim dataset (Hijmans et al.,
2005) available at http://www.worldclim.org/. To calculate area, elevation, and slope for
the watersheds, we used the Topodata 30m DEM dataset created and published by the
Instituto Nacional de Pesquisas Espaciais, (available at
http://www.webmapit.com.br/inpe/topodata/). The lithology dataset we used was
published by the Servico Geoldgico do Brasil (available at http://geobank.cprm.gov.br/).
The lithology dataset is not detailed; hence, the description of lithology in our watersheds
is generalized. We analyzed the relationship between erosion rates and a wide array of
topographic, climatic, and geologic variables (elevation, slope, area, precipitation,
lithology).

In order to compare our results to those previously published for Brazil, we used
published locations of sampling points (n=76) to delineate the watersheds and extract the
information necessary to obtain erosion rates from CRONUS. We also quantified
topographic and climatic variables (mean annual precipitation, basin slope, area and
elevation) following the same procedure we used for our sites (see Table DR2).

All of the explanatory (topographic and climatic) variables for each watershed were
quantified using ArcGIS 10.3 and entered into JMP 11, a statistical package, for parametric
analysis. We performed all statistical analyses assessing significance at the 95% confidence
level; therefore, we concluded that tests with p-values greater than 0.05 are not statistically

significant.
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Results

Erosion rates in the Brazilian drainage basins we sampled vary by a factor of 7,
from 13 m/My to 90 m/My (n=14, Table 3.1, Figure DRS, Figure DR6), with an average
of 32 m/My and a median of 23 m/My. Erosion for the watersheds in Rio de Janeiro
averaged 36+19 m/My and 27+13 m/My for the Santa Catarina watersheds (uncertainties
here and elsewhere are one standard deviation). There is no statistically significant
difference between the erosion rate of samples collected from Rio de Janeiro and those
from Santa Catarina (t = -0.77, p = 0.46). Both the highest and lowest erosion rates in our
study are in Rio de Janeiro watersheds. The highest erosion rate we measured was for a

watershed draining the Serra do Mar escarpment (BRA3S).
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Based on lithology, our sampled watersheds can be divided into granitoid (n=5),
granite and gneiss (n=5) and consolidated sedimentary lithologies (n=4). There is no
statistically significant difference in erosion rates as a function of these three lithologies
(F=1.29, p=0.31). Basins underlain by consolidated sedimentary rocks in our study erode
at an average rate of 20 + 2 m/My, whereas the basins underlain by granite and gneiss are
eroding at an average rate of 29 + 15 m/My; watersheds underlain by granitoids erode at
43 £+ 32 m/My on average.

Erosion rates in our dataset are proportional to mean basin slope (R? = 0.73, p <
0.001, (Figure 2.4). The highest average basin slopes in our study (24 to 29°) are in
watersheds that drain the Serra do Mar escarpment, where three of the four highest erosion
rates are found. The relationship between erosion and mean annual precipitation (MAP)
was also significant (R? = 0.57, p = 0.002, Figure 2.5). If precipitation and slope are
combined as predictive variables, the relationship with erosion improves slightly (R? =
0.78, p = 0.0002). While there is no significant bivariate relationship between erosion and
watershed area (R? = 0.13, p=0.20), smaller watersheds in general erode faster than larger
ones (Figure 2.6A, inset). Based on the area distribution of our watersheds, we can divide
the samples by quartiles into the following groups: 2-9, 9-150, 150-7010, and 7010-15000
km?. Comparing the means (Figure 2.6B), we find that the smaller watersheds (2-9 km?)
erode significantly faster than the larger basins (t=2.23, p=0.05; Figure 2.6A), most likely
because small headwaters watersheds on average have steeper hillslopes (21°) than larger

watersheds (12°).
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Figure 2.4: Regression plot of the relationship between erosion rate and mean basin slope. The strongest

relationship in our dataset (open circles) was found between erosion and basin slope. The relationship is

still significant but weaker in the entire southern and southeastern Brazilian dataset (filled black circles).

Portenga and Bierman (2011) found slope to be the strongest predictor of erosion in their global dataset
(filled grey circles).
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Figure 2.5: Regression plot of the relationship between erosion rate and mean annual
precipitation. The shaded zone represents the confidence interval of the linear fit at the
95% level.
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Figure 2.6: (A) Erosion rates sorted by basin area. Although erosion rates are not linearly related to basin
area (inset), there is a statistically significant difference in erosion rates by basin area category. Categories
not connected by the same letter are significantly different. (B) Erosion rate by mean basin slope
subgroup. The positive relationship between erosion and slope in our dataset (inset), can be further
explained by the correlation between area and slope. Steep headwater basins have a higher mean slope
than larger basins with extensive lowlands. Categories not connected by the same letter are significantly
different. Categories for area and slope were selected based on the quartiles of the values distribution. In
both insets, the shaded zone represents the 95% confidence interval. The bottom and top limits of boxplots
represent the first and third quartile of the data respectively. The line across the boxes is the median of
each category. The whiskers represent the minimum and maximum value of each category.
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Comparing the isotopic concentration of cobbles and sand transported as bed load
in three Rio de Janeiro channels (BRAO1, 02, 03), the concentration of '’Be in cobbles is
lower than in sand for all three sites (see Table 2.1). At one of the sites (BRA02), the
isotopic concentration differs by over an order of magnitude between river sand (1.22 x10°

atoms/g) and cobbles (2.26 x10* atoms/g).

Discussion

New erosion rate data, many of which are from samples collected from the steep
continental margin of southern and southeastern Brazil, are broadly consistent with,
although generally higher than, rates measured elsewhere in Brazil. Combining our new
data for 14 watersheds with those for which data have already been published, we find that
erosion rates in southern Brazil range between 1 and 90 m/My, with an average of 14 m/My

(Figure 2.7).
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Figure 2.7: Histogram of all cosmogenic °Be-derived erosion rates published for
southern Brazil. Erosion rates range from 1 to 90 m/My, with an average erosion rate
of 14 m/My. Most watersheds are eroding at < 30 m/My.
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Considering all southern Brazil samples, there are topographic and climatologic
correlations on erosion. We find in Brazil, as others (e.g., Brown et al., 1998) have found
in steep, tropical regions, that coarser fluvial sediment has less °Be than sand-sized
sediment, either the result of landslides delivering coarser material once at depth to the
stream (Brown et al., 1998) or because of the sourcing of coarser sediment from lower
elevations (Matmon et al., 2003).

The relationship between mean basin slope and erosion is the strongest one in the
compiled dataset of Brazilian erosion rates (R? = 0.33, p < 0.001). However, the
relationship is weaker than it is when we consider only our spatially limited dataset (Figure
2.4). Portenga and Bierman (2011) note that as the scale of analysis grows (from local to
regional to global), the relationship between topographic variables and erosion rate
decreases presumably as other factors such as lithology, tectonics, and climate influence
erosion rates. Similarly, there is a relationship between precipitation and erosion at the
regional scale in Brazil (R>= 0.05, p = 0.03), but it is much weaker than the relationship
shown by our 14 samples collected in a smaller area (R? = 0.57; Figure 2.4). Considering
all Brazilian data, basin area is not related to erosion (R?=0.01, p = 0.30) although regional
studies, including ours, find that erosion is more rapid in smaller, steeper headwater sub-
basins in Brazil than in larger, lower-slope basins (Salgado et al., 2006, 2007).

Considering all Brazilian studies, we find that there is a significant difference in
erosion rate as a function of lithology (F=10.9, p <0.01). Basins underlain by granite,
granitoid, and consolidated sedimentary material erode significantly faster than those

underlain by quartzite, schist, and phyllite (Figure 2.8). Lithologic effects on erosion rate
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has been noted in other, smaller-scale Brazilian studies. Similar to our findings at the large
scale, Barreto et al. (2013) found that basins underlain by schist and phyllite erode more
slowly than watersheds underlain by granite and quartzite and Salgado et al. (2008)
measured the fastest erosion rates in watersheds underlain by granite, and the slowest in
those underlain by quartzite. Salgado et al. in another study (2013), show that watersheds
in Parana state underlain by granite erode more slowly than watersheds underlain by
migmatites and gneisses. In Brazil, only Rezende et al. (2013) reported that granite-bearing
watersheds eroded more slowly than watersheds underlain by other lithologies.
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Figure 2.8: Brazilian erosion rates by predominant basin lithology. The compiled Brazilian dataset shows
differences in average erosion rates as a function of dominant lithology in each samples basin. Basins
underlained by granite and granitoids erode significantly faster than those underlain by quartzite, schist,
and phyllites consistent with findings from smaller scale studies in Brazil. The bottom and top limits of
boxplots represent the first and third quartile of the data respectively. The line across the boxes is the
median of each category. The whiskers represent the minimum and maxim value of each category.
Categories not connected by the same letter are significantly different.

Comparing our data to other cosmogenic '’Be-derived erosion rates for watersheds
in southern and southeastern in Brazil, we find that some of our 14 watersheds are among

the most rapidly eroding (Table 2.2, See Portenga and Bierman for data). For example, the
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coastal portions of Rio de Janeiro and Parana states have similar geologic settings, with the
Serra do Mar escarpment crossing both states. Previously published denudation rates for
watersheds draining the escarpment in Parana state (Salgado et al., 2013) range between 8
and 62 m/My, with an average of 20 m/My. This is considerably slower than the average
erosion rate of the escarpment-draining watersheds in our small dataset (n=4), 63 m/My.

In all Brazilian studies, steep escarpment-draining watersheds have the highest erosion

rates.
Table 2.2 : Summarized published cosmogenic !"Be-derived erosion mates for tropical climates and passive margin topography sites
Country Publications Samples Erosion rates (m/Myr) Comparison type
Range Average Median

Avustralia Heimsath et al, 2009 14 8.3-519 18 208 Tropical
Nichok et al , 2014°

Bolivia Inseletal, 2010' 12 33.6 - 907 360 260
Wittmann et al., 2009

Madagascar Cox etal , 2009 7 5.8-223 13 118

Panama Nichoks et al, 2005 17 88.3-218 158 160.5

Puerto Rico Brown etal, 1995" 27 17.6 - 144 61 515
Brown et al, 1998"
Riebe et al. 2003

SriLanka Hewawasam etal, 2003 16 3.81-282 22 185
von Blanckenburg et al., 2004

Nambia Bierman and Caffee, 2001 46 151-146 9 87 Passive margin

Bierman et al, 2007
Southeastern USA Duxbury et al, 2015 136 3.02-487 13 10.6
Sullvan, 2007

Reusser et al, 2015°

Avustralia Heimsath et al, 2006 17 6.49 - 119.4 43 457 Tropical passive
Nichok et al , 20147 margin

SriLanka Vanacker et al | 2007 19 1.92-694 23 12.2

Brazil - escarpment Barreto et al, 2013, 2014° 57 149-615 10 53 Brazl studies”

Cheremetal | 2012°
Rezende et al 2013°
Salaado et al, 2013°
Brazil - highland Cherem etal , 2012° 19 107-219 11 11
Saloado et al | 2006, 2007, 2008°

1 Erosion rates re-calculated using CRONUS and published by Portenga and Bierman (2011)

2 Erosion rates from the original publication, calculated using CRONUS

3 Erosion rates recalculated using CRONUS

4 Samples in Salgado et al., 2006, 2007, and 2008 are from the same locations but were processed using
different AMS standards. We used the most complete dataset of all three, the 2008 publication, for our
comparison

® Data from this study are not included in this table, see Table 1
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At a global scale, in comparison with erosion rates derived from cosmogenic '’Be
measured in river sand collected from other passive margin locations, Brazilian erosion
rates have a wider range than those in Africa (Namibia) and North America (Table 2.2,
Figure 2.9, See Portenga and Bierman for data). A one-way ANOVA comparing the
erosion rate of basins in these three passive margins shows a statistically significant
difference in at least two of the groups (F = 4.81, p < 0.01). Basins sampled in Brazil and
North America, are eroding at a similar pace. In contrast, the escarpment-draining
watersheds sampled in Namibia are eroding at a slower pace, significantly different to
Brazil and North America, perhaps because Namibia is far drier than both Brazil and North
America. The average erosion rate for passive margin watersheds in Namibia is 9£3 m/My
(n=46; Bierman and Caffee, 2001; Bierman et al., 2007). Several studies have measured
erosion rates for watersheds draining the southeastern United States passive margin.
Published cosmogenic-derived erosion rates for Virginia watersheds average 11+8 m/My
(n=69; Duxbury et al., 2015; Reusser et al., 2015). Samples from other sites in southeastern
USA (North Carolina, South Carolina, Georgia and Alabama) also suggest an average
erosion rate of 11+5 m/My (n=19; Reusser et al., 2015). The Blue Ridge Escarpment in

North Carolina and Virginia, USA is eroding more rapidly, 17£9 m/My (Sullivan, 2007).
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Comparing the erosion rates of our sampled watersheds with other tropical regions

where cosmogenic '’Be has been measured in river sediments, we found that areas of Brazil
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sampled so far are eroding considerably slower than areas sampled in Puerto Rico, Panama,
Sri Lanka and Bolivia but faster than tropical regions of Madagascar and at a similar pace
to Australian basins (Table 2.2, Figure 2.9, See Portenga and Bierman for data).
Madagascar is the mostly slowly eroding with an average erosion rate of 13+5 m/My (n=7;
Cox et al., 2009). The tropical regions in Australia erode on average at 18£12 m/My (n =
14; Heimsath et al., 2009; Nichols et al., 2014). Tropical watersheds in Sri Lanka erode at
an average pace of 22+11 m/My (n=16; Hewawasam et al., 2003; von Blanckenburg et al.,
2004). The average erosion rate for watersheds in Puerto Rico is 61+34 m/My (n=27;
Brown et al., 1995; Brown et al., 1998; Riebe et al., 2003). Panama is eroding significantly
faster than Brazil at an average erosion rate of 158435 m/My (n=17; Nichols et al., 2005).
Cosmogenically derived erosion rates measured in the tropical region of Bolivia average
360+£296 m/My (n=12; Insel et al., 2010; Wittmann et al., 2009). Erosion rates in Brazil
are significantly different only from those in Bolivia, Panama, Puerto Rico (F = 38.7,
p<0.01).

Some of the basins sampled in Bolivia, Panama, and Puerto Rico record a greater
mean annual rainfall than the Brazilian ones we studied, which may explain in part the
higher erosion rates. However, tectonic activity appears to be the major controlling factor
for rates of erosion at a basin scale in tropical region studies. Bolivian erosion rate samples
were collected in a tectonically active region of the Andes; Puerto Rico and Panama are
also tectonically active, which contrasts with the passive margin setting of southern and

southeastern Brazil.
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The influence of tectonic setting can be quantified using expected Peak Ground
Acceleration (PGA) from earthquake activity where PGA is defined as the magnitude of
ground motion with a 10% chance of being exceeded within 50 years, and expressed as a
fraction of the acceleration due to gravity (g) in soil (Giardini, 1999). PGA maps, a proxy
for tectonic activity, from the Global Seismic Hazard Assessment Program (Giardini, 1999;
http://www.seismo.ethz.ch/static/GSHAP/) show that Brazilian sample sites have PGA
values well below 1g. Watersheds in Puerto Rico average 1.88g, whereas Bolivia and
Panama record a lower average PGA of 1.55 and 1.43g, respectively. Tectonic activity has
been linked to accelerated rates of erosion (Dedkov and Moszherin, 1992), perhaps because
repeated shaking fractures and weakens the rocks (Young et al., 2000). Furthermore,
Milliman and Syvitski (1992) suggest that a complex relationship between fractured rocks,
steep slopes, seismic and volcanic activity, rather than relief alone, controls erosion in
active orogenic belts. This may be the case for Puerto Rico, Bolivia, and Panama.

Cosmogenic '’Be has been used as an erosion proxy in tropical regions with
escarpment topography in Sri Lanka and Australia (see Table 2.2 and Figure 2.9).
Considering all published data, Brazilian escarpments are eroding at an average rate of
13+16 m/My (n=60; Barreto et al., 2013, 2014; Cherem et al. 2012; Rezende et al., 2013;
Salgado et at., 2006, 2007, 2008, 2013; this study; Table DR2). This rate is considerably
slower than the average rate for Sri Lanka, where the published data suggest that
escarpment watersheds erode at an average of 23+23 m/My (n=19; Vanacker et al., 2007).
Australian escarpment basins erode even more quickly, at an average rate of 43+30 m/My

(n=17; Heimsath et al., 2006; Nichols et al., 2014). A One-way ANOVA comparing the
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erosion rates of escarpment watersheds in Australia, Sri Lanka and Brazil shows
differences between at least two of the countries (F = 16.4, p < 0.01). The Australian
escarpment is eroding significantly faster than the Brazilian and Sri Lankan escarpments.
The main lithology of the sampled watersheds in the Australian escarpment is sedimentary,
in contrast with those watersheds sampled on the Brazilian escarpment, which are mostly
underlain by crystalline rock. If the relationship between lithology and erosion rate in
Brazilian watersheds is similar in Australia, this might explain why the Australian
escarpment erodes more quickly than escarpments in Brazil and Sri Lanka. Precipitation
could also be driving the increased rates of erosion on the Australian escarpment. Mean
annual precipitation in the sampled Australian watersheds is up to 2500 mm/yr, greater
than rainfall in the Brazilian watersheds we sampled.
Conclusions

The first '“Be-based, drainage-basin scale erosion rate estimates from Rio de
Janeiro and Santa Catarina states in Brazil are broadly consistent with other cosmogenic
erosion rate data from southern and southeastern Brazil, and indicate that erosion rates in
this tectonically inactive environment are mostly a few tens of meters per million years.
Drainage basins in southern and southeastern regions of the country are eroding between 1
and 90 m/My with an average rate of 14 m/My. Erosion rates are greater in basins draining
escarpments than in basins draining lower-relief highlands. Similar to other cosmogenic
studies in Brazil, we found that the smaller, steeper headwater catchments erode faster than
the larger, higher-order but lower slope catchments. Erosion in Brazil is mostly controlled

by mean basin slope with lesser influence of climate and lithology.
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Chapter 3 — Spatial and temporal variation of erosion in Yunnan, China measured

using 1°Be and contemporary sediment yields

Abstract

19Be, both in situ and meteoric, is measured in river sediment to quantify
background erosion rates and as a tracer of surface processes. Applications of this method
are based on the rarely-tested assumption of time-invariant °Be concentration. We
analyzed 103 samples for temporal variations in °Be concentration over timeframes from
months to millennia. While the central tendencies of temporal comparisons are similar,
there is variability beyond analytical uncertainty. Our data show similar concentrations in
samples taken 6 months apart and paired in-channel and overbank samples, suggesting that
the monsoon does not systematically alter sediment sourcing to rivers in Yunnan. °Be
concentrations vary more over longer time frames, though not in a systematic way.

We assess the effects of land use on sediment yields, using sediment yield data from
the mid-1980’s when deforestation was widespread. Comparing long-term,
cosmogenically-determined erosion rates with contemporary sediment yield data, we find
that in 15 out of 20 basins the contemporary sediment yield is higher than long-term rates
of sediment generation, by an average factor of 3. This discrepancy likely reflects
deforestation and agriculture promoted by the Chinese government in the later 20" century.
Using the same sediment yield data, along with measurements of meteoric °Be, we
calculate the erosion index for each watershed, an approach for understanding whether

watersheds are in steady state in regard to fluxes of meteoric °Be and the sediment to
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which it is adhered. Only four basins show a balance between soil formation and erosion,
the remaining basins are split between samples that export sediment at a faster rate than it
is produced, and basins that store sediment.

Long-term erosion rates, derived from in situ-produced °Be, range from 0.02 to
0.39 mm/yr, and are strongly and positively related to mean basin relief, slope, and
normalized channel steepness. Our results suggest that topography exerts a first-order
control on erosion.

Introduction

Cosmogenic isotopes, including ®He, ?'Ne, %Al, *C, %Cl and '°Be, have many
applications in the Earth Sciences, including geomorphology (Strobl et al., 2012),
hydrology (Siiltenfuf et al., 2010), and landscape dynamics (Mackey et al., 2014).
Following the development of accelerator mass spectrometry (AMS) in the early 1980’s
(Turekian et al., 1979; EImore and Phillips, 1987), with the capability of quantifying very
low concentrations of these isotopes in rock and near-surface materials, cosmogenic
isotopes have been widely used to study surface processes (e.g., von Blanckenburg and
Willenbring, 2014; Dunai and Lifton, 2014). Two °Be systems have been used for
geomorphic applications — meteoric and in situ.

In situ produced 1°Be (1°Be;) is the most widely used cosmogenic isotope (Portenga
and Bierman, 2011; Heyman et al., 2011) because it accumulates in a common mineral
(quartz), is easily measured, and there is only one primary production pathway (Lal, 2000).
It has been used since the 1990’s to study erosion and sediment transport (e.g., Nishiizumi

et al.,, 1993; McKean et al., 1993; Monagahan et al., 1992; von Blanckenburg, 2005;
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Willenbring and von Blanckenburg, 2010). In situ °Be forms in the crystal lattice of quartz
as the result of spallation reactions between secondary cosmic rays (primarily neutrons)
and the oxygen and silicon nuclei in quartz. This reaction occurs primarily near Earth’s
surface and is inconsequential at depths greater than ~ 2 meters (Lal and Peters, 1967).
Because of this, °Bej is a good indicator of near-surface residence time of rock and
regolith, and thus of denudation rates at both the outcrop and basin scale, which are
inversely related to isotopic concentration (Brown et al., 1995; Bierman and Steig, 1996;
Granger et al., 1996).

Meteoric °Be (*°Bem) forms in the atmosphere through cosmic-ray induced
spallation of nitrogen and oxygen nuclei (Lal and Peters, 1967; Graly et al., 2011). Once
formed in the atmosphere, the isotope adheres to aerosols and is delivered to the surface by
either precipitation or dry deposition (McHargue and Damon, 1991). The delivery of 1°Ben,
is a function of latitude, precipitation, and the movement of the isotope within the
atmosphere (Graly et al., 2011; Willenbring and von Blanckenburg, 2010). Most °Ben,
resides in the upper few meters of soil and regolith (Graly et al., 2010). Although *°Ben
has been used less than 1°Be; for geomorphology (Willenbring and von Blanckenburg,
2010), °Bem has been used as a sediment tracer at the watershed level (e.g., Reusser and
Bierman, 2010) and to estimate rates of sediment transport (Jungers et al., 2009; Wittmann
and von Blanckenburg, 2009; Wittmann et al., 2009, 20114, 2011b; West etal., 2011, 2013,
2014; Campforts et al., 2016). 1°Ben can also be used to calculate the erosion index (EI) of
a watershed, which reflects the balance between delivery and export of the isotope, a

function of erosion and sediment transport efficiency (Brown et al., 1988).
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Accurately interpreting basin-scale geomorphic behavior from both 1°Be;j and °Ben
in river sediment assumes both that the rate of erosion is steady over the time period
integrated and that sampled sediment is representative of the entire basin (Brown et al.,
1995; Bierman and Steig, 1996; Granger et al., 1996) — assumptions that have rarely been
tested. Variations of 1°Be;j and °Bem concentrations over time and space beyond analytical
precision have been found in a few watersheds (Reusser and Bierman, 2010). Small
watersheds, like some included in temporal 1°Be comparisons, are influenced by stochastic
events, such as landslides (Niemi et al., 2005), bank collapses, and debris flows that have
the potential to change the isotopic concentration of sediment over both time and space.
Measurements of the temporal variations of 1°Be; and *°Ber, in the mainstem of large river
basins (>1,000 km?) basins are scarce (Wittmann et al., 2009, 2011c) but variability at
larger scales may be less than at smaller scales (Matmon et al., 2003; Niemi et al., 2005;
Reusser and Bierman, 2010). To the best of our knowledge, there is only one temporal
replicate published for a large river basin (Lupker et al., 2012). Temporal variation of 1°Be;
over millennial timescales has been assessed by comparing isotopic activity of river
terraces and active channel sediments in France, the Netherlands, and Madagascar
(Schaller et al., 2002; Cox et al., 2009).

The goal of this paper is to measure the variability of both °Be;i and °Ben
concentrations in river sediment over different time and spatial scales for the Mekong,
Salween, Irrawaddy, and Red Rivers in China. We then compare these data to unusually
long and complete records of contemporary sediment yield (Henck et al., 2010) on the

same rivers while considering the relationship between measured °Be and topographic and
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climatic metrics for each drainage basin. This comparison allows us to understand whether
erosion has been similar over time and space, and speculate on what controls rates of
erosion in this region.

Study Area

Yunnan province is located in southwestern China. The province is a mostly
mountainous region connecting with the Tibetan highlands in the northwest and descending
into a broad plateau toward the east (Leloup et al., 1995). Climate in Yunnan is controlled
largely by elevation (ranging from 76 to 6740 m, exceeding 4000 m in most mountainous
areas), with mean annual temperatures ranging between 7 and 22°C; between 800 and 1100
mm of precipitation falls annually (Hui et al., 2013; Leloup et al., 1995). Yunnan’s climate
is dominated by the interaction between the East Asian summer monsoon and the Indian
summer monsoon, as well as by surface orography (Hui et al., 2013). During the monsoon
season (June to September), 85% of the annual precipitation falls and the rivers transport
62% of the annual discharge and 86% of their annual suspended sediment (Henck et al.,
2010). Soil erosion is intensified during the monsoon months by flooding and runoff
(Zisheng et al., 2010).

The geology of Yunnan is the result of a long history of the interactions between
tectonism, surface uplift, and regional climate (Schoenbohm et al., 2004). Twelve geologic
units underlie the watersheds sampled for this study (Figure 3.1A). There are four geologic
units that each underlie at least a portion of each of the four major basins we study
(Mekong, Red, Irrawaddy and Red). These geologic units are the: Tenasserim-Shan block,

Lhasa terrane, Qiangtang terrane, and the Lanping Simao basin (USGS, 2000). The Lhasa
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unit is characterized by three distinctive belts of rocks: a northeast belt of Mesozoic
sedimentary rocks; a central belt dominated by Upper Paleozoic sedimentary and
sedimentary rocks; and a southern belt of Mesozoic and Cenozoic plutonic rocks (Burchfiel
and Chen, 2012a). The Lanping-Simao basin is mostly composed of sedimentary rocks,
with some volcanic rocks of Triassic age (Burchfiel et al., 2008). The Qiangtang unit is
composed of Paleozoic and Mesozoic rocks overlain by an Upper Triassic to late Mesozoic
sedimentary cover (Burchfiel and Chen, 2012b). Field observations and a geologic map of
the region (Geology of Sanjiang, 1986) indicate that granite, limestone, and sandstone
underlie most of our studied watersheds. Monzonitic granite underlies the basins we
sampled within the Mekong River (Geology of Sanjiang, 1986). The Lancang and
Gaoligongshan groups stretch over portions the main channel of the Mekong and Salween
rivers, and are composed mostly of schist, gneiss, marble and quartzite (Geology of
Sanjiang, 1986). Sandstones, limestones, and slates of Cambrian and Triassic ages

underlain a significant portion of our field area (Geology of Sanjiang, 1986).
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Figure 3.1: Sampled watersheds. Watersheds included in this study are parallel to the southwestern border
of China, Yunnan Province. Several geologic units underlie our study area (A). Map data from USGS
(2000). Each of our four major basins have least a portion in one of these four units: Lhasa terrane,
Lanping-Simao basin, Tenasserim-Shan block and Qiangtang terrane. Our samples include hydrology
stations, and some sites were sampled multiple times (B). Mean basin slope in our studied watersheds
range from 9 to 20° (C). Data from NASA 30-m GDEM. Mean annual rainfall in our watersheds range
between 511 and 1349 mm (D). Data from APHRODITE (Yatagai et al., 2012).

Western China, including Yunnan, experienced extensive deforestation during the
20" century, when forests were cleared for fuel, cropland, or private economic benefit

(Tracetal., 2007; Fang and Xie, 1994; Rozelle et al., 1997; Shapiro, 2000). Forest coverage
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in Yunnan ranged from 10 to 20% between 1940 and 1980 (He et al., 2015). The severe
droughts China faced in 1997 followed by massive floods along the middle and lower
Yangtze in 1998 triggered the implementation of two nationwide programs to increase and
protect forested areas: the Natural Forest Protection Program and the Returning Farmland
to Forest Program (sometimes referred to as the Sloping Land Conversion Plan or Grain to
Green Program) (Trac et al., 2013; Xu et al., 2006; Zhang et al., 2014; Weyerheuser et al.,
2005). By 2003, both of these programs were implemented in Yunnan (Zhang et al., 2014).
Increase in cropland and decrease in forested land were recorded before the programs were
begun; as a result of the programs, forest cover has increased, and cropland has decreased
in the decade following the implementation (Zhang et al., 2014). There is controversy about
the effectiveness of these programs in southwest China (Brandt et al., 2012; Trac et al.,
2007, 2013). While an increase in sediment flux is generally associated with extensive
deforestation and agriculture, sediment exported from Chinese rivers decreased between
the years 1993 and 2000, likely due to the construction and operation of hydropower dams
(Kummu and Varis, 2007, Lu and Siew, 2006).

China is the ideal location to compare long-term erosion rates calculated from 1°Be;
concentration with contemporary sediment yield because of unusually detailed and
complete river sediment yield and discharge records. The Chinese Hydrology Bureau has
collected data, including discharge and suspended sediment, in Yunnan since 1949, but the
records are not publicly available after 1987 (Henck et al., 2010). Data available from the
sediment records coincides with the period of massive deforestation in China (1950s to

1990s). The sediment data were compiled, published, and analyzed by Schmidt et al.
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(2011). Their work found that sediment yield for rivers in Yunnan correlates with upstream
area, rainfall, cropland and population density (Schmidt et al., 2011). The relationship with

area is negative, while the others are positive.

Methods

We collected 64 sand-size (250-850 um) sediment samples from active river
channels and floodplains to analyze for both 1°Be;i and °Ben (Figure 3.1B). Our erosion
rate calculations also include two laboratory processed replicates (CH-137(A) and CH-
148(A)), and a sample collected by Devin McPhillips (Y-13-01-DM), collected
approximately 2 kilometers downstream from our CH-113 sample. Including these three
samples, our erosion calculations consider a total of 67 samples (Table 3.1; Table DR3).

For most watersheds, we have samples from tributaries and the mainstem, except
for the Irrawaddy River, from which we have no mainstem samples. Eleven sites were
sampled in May - June 2013 just as the monsoon was beginning (series CH-0XX), and
resampled in January 2014 during the dry season (series CH-1XX). We also resampled
seven sites first sampled by Henck et al. (2011) in 2005 (series TRR-XX). These samples
had been analyzed for 1°Be;j but not 1°Bem; we analyzed the seven TRR samples for 1°Ben.
Sample TRR-14b was not analyzed for 1°Be; due to a high content of native °Be in the
sample. To test for seasonal bias of sediment sourcing, we sampled sediment from the
active channel during dry season base flow and adjacent overbank sediment deposited
during monsoon floods. When alluvial terraces alongside the river contained charcoal, we

sampled charcoal and sand-size material deposited in the same stratum. We radiocarbon
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dated the charcoal at the W.M. Keck Carbon Cycle Accelerator Mass Spectrometry

Laboratory, California (Santos et al., 2007; Table DR4).

Table 3.1: Number of samples included per category

Analysis Isotope analyzed Amount of samples ncluded Sample year

Erosion rates and ‘ropn::graph}:1 B, 67 2014
Temporal replicates - 6 months Be, 22 2013/2014
"Be_ 18 2013/2014
Temporal replicates - in channel/overbank ;) g 64 2013/2014
Be_ 58 2013/2014
Temporal replicates - decade ) [N 12 2005/2014
Be, 12 2005/2014
Temporal replicates - millenial Be; 18 2013/2014

1 We used the error-weighted average isotopic concentration of in channel and overbank sediment
for erosion rates calculation and regression analysis, when both data were available. We used 35
sites for regression analysis.

2 Temporal replicates include both samples included in each temporal analysis

Quartz from the samples was isolated and purified through a series of acid etches,
a modification of the method of Kohl and Nishiizumi (1992). 1°Be;i was extracted from
quartz following the method of Corbett et al. (2016). Once the quartz was dissolved in
hydrofluoric acid, aliquots were removed and analyzed by inductively coupled plasma-
optical emission spectroscopy (ICP-OES) to measure Be and Al content (Portenga et al.,
2015; Corbett et al., 2016). 21 samples had Be recovery >100% (range: 106.2 — 198.1%)
(based on the Be carrier added), indicating the presence of native Be in those samples.
Samples analyzed for °Ben were milled in preparation for isotopic analysis. A small
(~0.5g) of pulverized material was used for isotopic extraction. We used a modification of
the flux fusion method of Stone (1998) to extract °Ben.

Isotopic ratios were measured using Accelerator Mass Spectrometry (AMS) at the
Scottish Universities Environmental Research Centre in East Kilbride, Scotland (Xu et al.,

2010) and normalized to the NIST standard with an assumed 1°Be/°Be ratio of 2.79 x 10
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(Nishiizumi et al, 2007; Table DR3). Background correction was done using full process
blanks, one of which was run with each batch of 10 samples. For samples with native °Be,
we used the total Be from ICP measurements to calculate °Be concentration, rather than
the amount of Be added as carrier (c.f., Portenga et al., 2015). The final uncertainty of the
blank-corrected ratio is the uncertainty of the isotopic measurement and the blank
propagated in quadrature.

We used the 30m GDEM (NASA LP-DAAC, 2012), to calculate area, mean
elevation, mean basin slope (Figure 1C), and normalized channel steepeness (ksn) for each
watershed. We calculated mean basin relief using a 5-km radius. We calculated ksn as per
Wobus et al., (2006). Two outliers on the ksn data (values of 8085 and 13406) were not
considered for analysis. Erosion rates, which we consider as long-term sediment yields,
were calculated from °Be; concentrations using the CRONUS Earth Calculator Version

2.2 (http://hess.ess.washington.edu/) (Balco et al., 2008). In order to estimate erosion rates,

we calculated the effective elevation of each watershed using the approach of Portenga and
Bierman (2011) (see Table DR5 for CRONUS input). We used the error weighted-average
of the isotopic concentration of active channel and overbank material at a site to calculate
erosion rates and for consequent statistical analysis. In places where we sampled both
active channel and overbank sediment in 2013 and 2014, the error-weighted average of all
four concentrations is used. We used the scaling scheme of Lal (1991) and Stone (2000)
and the global production rate of °Bei. Climatic data were extracted from the
APHRODITE program dataset (Yatagai et al., 2012) (Figure 3.1D). Though this dataset

has a coarser resolution than others available, it is the most accurate for Asia (Andermann
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et al., 2011). Land cover data were extracted from the GlobeLand30 dataset (Chen et al.,

2015; http://globallandcover.com). We quantify peak ground acceleration (PGA), a proxy

for tectonic activity in our watersheds, using the dataset from Giardini (1999).

We use the modern sediment yield for 22 rivers as calculated and published by
Schmidt et al. (2011), based on discharge data from the Chinese Ministry of Hydrology

(http://www.oberlin.edu/faculty/aschmidt/chdp/index.html). We compared long term

erosion rates deduced from °Be; concentration to modern sediment yield data to quantify
changes in sediment flux over time. We divided the modern sediment yield by the long-
term sediment yield to obtain the ratio of yields, and discuss our findings in terms of this
ratio. At one site (CH-133), the modern sediment yield is greater than the long-term by a
factor of 121, this outlier is not included in our analysis.

To calculate erosion indices, we used the equation of Brown et al. (1988):

I=Mpn’/Aq, 1)

where M is the annual sediment load (g/yr), 5 is the °Bem concentration (atoms/g) in the
material leaving the basin, A is the basin area (cm?), and q is the atmospheric deposition
rate of 1°Ben in the watershed (atoms cm yr1). The value of q for each watershed was
calculated as per Graly et al. (2011). We calculated M using measured contemporary
sediment load (Schmidt et al., 2011). One EI value of 54.4 (CH-133) is an outlier, and is

not considered for analysis.

To quantify temporal variations in isotopic concentrations, we subtracted the

isotopic concentration of the replicate from the concentration of the original sample (or in
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channel from overbank for interannual replicates), and divided by the average of the
measurements. We express the result as a percentage. Samples with differences greater
than 10% are not considered to be within error.

Topographic metrics for each watershed were quantified using ArcGIS 10.3 and
entered into JMP 11, a statistical package, for parametric analysis. To test for differences
in isotopic activity over time, we used the Wilcoxon test. We performed all statistical
analyses assessing significance at the 95% confidence level and thus concluded that tests

with p-values greater than 0.05 are not statistically significant.

Results

Measured 1°Be; activities for in-channel and overbank samples range from 2.72x10*
to 5.21x10° atoms/g (Table DR3). Error weighted-average in-channel and overbank °Be;
concentrations, used for erosion calculations and regressions with topography variables,
range from 3.72x10* to 5.0x10° atoms/g (Figure 3.2A). Erosion rates (calculated from
error-weighted average *°Bej concentrations) range between 0.02 and 0.39 mm/yr, with an
average and a median of 0.16 and 0.13 mm/yr, respectively (Table DR6). While there is no
distinct spatial pattern in the long-term erosion rates (Figure 3.2B), an ANOVA test shows

a significant difference in the erosion rate by basin (F= 3.6, p = 0.02, Table 3.2).
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Figure 3.2: Spatial variation of error-weighted averaged isotopic activities and erosion rates. Categories
for the isotopic concentration maps are determined by the quantiles in the data, because the concentrations
are highly skewed. Our data shows no spatial pattern on the distribution of °Be; concentrations (A).
Erosion rates derived from *°Be; range from 0.02 and 0.39 mm/yr (B). Erosion rates calculated from °Be;
concentration at the outlet are representative of the entire upstream area of each watershed. No spatial
pattern can be distinguished in the distribution of °Ben activities (C). Insets show the distribution of °Be
concentrations in our dataset.
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Table 3.2: Summarized erosion rate for each major basin

River Samples ana }yzedl Erosion rates (mm/yr) ANOVA®
Range Mean sD
Mekong 12 0.04-037 014 0.11 B
Salveen 11 0.14-039 022 0.10 A
Irrawaddy 4 0.12-0.18 015 0.03 A B
Red g 002-016 009 0.05 B

! To calculate erosion rates, we used the error-weighted average of in channel and overbank sample at
each site.
2 Summary of ANOVA results. Categories not connected by the same letter are eroding at significantly

different rates (p < 0.05).

Agricultural land use (R?= 0.60, p < 0.01), mean basin relief (R?> = 0.61, p < 0.01)
and basin area (R = 0.60, p < 0.01), are significantly related to erosion rates in our dataset
(Figure 3.3). The relationship between erosion and agricultural land use is inverse, whereas
the relationships with area and relief are positive. We find that mean ksn (normalized
channel steepness) (R? = 0.55, p < 0.01) and slope (R? = 0.51, p < 0.01) are strongly and
positively correlated with erosion rates (Figure 3.3). Combining area and slope slightly
increases the relationship with erosion rates (R? = 0.72, p < 0.01). There is no statistically
significant relationship between erosion rates and peak ground acceleration in our dataset
(R? = 0.06, p= 0.14). Our dataset shows a strong and inverse relationship between erosion
rate and mean annual rainfall (R = 0.60, p < 0.01). Evaluating the relationship between
erosion rate and mean annual rainfall in each of the four major basins, we find that the
relationship is inverse in all basins, but only significant for the Mekong and Salween.
Similarly, area is significantly related to erosion rate in only the Mekong and Salween
rivers, and positive in all watersheds. Slope and relief are significantly and positively
related to erosion rate in the Mekong and Red watersheds only (see Table DR7 for
regression information).

55



‘(4) pue ‘(3) ‘(g) sjaued uo sixe- A d1wyiLebo] ay) 810N wedlyubis jou si diysuoliejal sy ‘sanjeA asoyl
BulIBpPISUOD UBYM ‘USy pue Salel UOIS0Ja 10J 10]d uolssalbial ay] Ul PaAOLLIBL aJaM SIal[Ino oM "palejal Ajaanisod are (4) adojs pue (3) usy uiseq Ues|\
"SaJe. U0IS0Jd 0] pajejas A|Buois osje ate (Q) |fesures [enuue uesw pue (D) eale uiseg “UBUUNA UI Spaysiarem pajdwes ul uoisosa yum diysuonejal
1596uons ay1 aney (g) Joljal uiseq ueaw pue (W) asn pue| Jedmnaiby -ssjgerten oiydeibodol pue ajes uolsols usamiaq diysuonelsy £ ainbi4

(o) edo|g ueapy usy uiseq uesi (ww) [jejurey |enuuy ueapy
74 0z ! (]! 051 0oL 0§ o0 005} 0001 005

L L L L _\Q.o N - - _ N L 1 Oc

10°0>d ‘150 = 2 3 10°0>d ‘550 = 7 o S om Mo 10°0>d ‘0970 = 2y 3
LN ]

© ) o ot *» & 1o 2
<& ® o | | ™ ®
] . a o g . =4 < S
N (] n ® )
DU S . AP S . wrzo §
042 Lo 3 ° o VI M Fo 3 g 3
v o u o 2 o
H : 3 "%, 3 o n 3
+ g E L 3 E]
g 4 3 2

4L, 7 o’ a Lso

{gun) eory (w) jaljay uiseg uesjy (uiseq jo 9,) asn pue| |[eanjna2by
00000z 0000sL 00000} 00005 A_uo.o 0002 0061 0001 008 09 or 0z 0
10°0>d ‘09°0 = oY . ; ! : Lo o o 00
0. o H00=dL90 =2y 3 . = 100>d29°0 = 7 &
¢ 1o ® < 4 ‘ s . 0 o
@ £ *t g e vo -
° s 91 = . o % e
% @ . . I} < v g
: w0 § Do | % - . g
L] w °ou° * =10 3 L N
. | v = o
- reo o - v -3 m-eo o
. . n - o Kppemeu) . u e
n L | | —_ .

| ] Fo Wp . l*. W ussmeg u b0 w
3 3 pay g

Jlgo al, e Buoysly v -s0

56



1%Bem concentration ranges from 0.30 to 9.07x107 atoms/g. All samples from the
Irrawaddy and most from the Salween River have isotopic activities in the order of 10°
atoms/g (Figure 3.2C). Most samples from the Mekong and Red Rivers have activities on
the order of 107 atoms/g. We found a significant, positive relationship between °Ben,
concentrations and 1°Be;j concentration (R? = 0.51, p = 0.01) and agricultural land use (R?
=0.21, p < 0.01). °Ben is inversely related to mean basin slope (R?> = 0.31, p = 0.01) and
relief (R? = 0.32, p < 0.01). °Ben is not significantly related to area (R = 0.02, p = 0.46),
rainfall (R? = 0.05, p = 0.19), or ksn (R?=0.01, p = 0.50).

Isotopic activity of 1°Bej and 1°Benm exhibits temporal variation over some of the
timeframes we studied (Figure 3.4, Figure 3.5, Table 3.3; Table DR8). Comparing °Be;
over a 6-month period, we find 7 out of the 11 analyzed samples are within 10%. Only one
sample (out of 6) is in agreement over a 6-month period for *°Ben. The concentration of
19Be; and °Bem varies when comparing in channel and overbank samples (interannual
variation). For 1°Be;, 11 (out of 32) samples are within 10% of each other, °Ben
concentrations are within 10% in 10 out of the 29 samples. For both isotopes, the isotopic
concentrations of in-channel samples are not significantly different from overbank
samples. Over a decade, the concentration of °Ben, is only within 10% in one of 6 samples,
while none are within 10% for 1°Bei. In 4 of the 11 samples we analyzed, °Be;
concentrations are within 10% over a millennial timeframe. The only statistically
significant difference in our temporal comparisons is for °Be;j over a decade. Temporal

comparisons exhibit a considerable amount of noise beyond analytical uncertainty, with
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samples exceeding 100% difference in some cases although central tendencies of sample

populations are similar.
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Table 3.3: Summary findings on temporal comparisons of isotopic concentrations

Temporal comparison Isotope Samples Wilcoxon test results” Percent difference
Inciuded in analysis Within error of each other’ t D Range Mean SD
6 months "Be, 11 7 -7.50 049 -34t033 4 0.17
"Be. 9 1 3.50 0.73 -30to54 2 030
Interannual "Be, 32 11 905 0.06 -T2to52 9 0.24
"Be,. 29 10 50.0 029 9710121 5 045
Decade ge, 6 0 105 0.03 -10l1to-34 -80 21
Yge,, 6 4.50 044 46to54  -14 035
Millennia YBe; 11 4 9.50 030 -T2t077 6 043

1 Samples that are within 10% of their temporal replicate are considered within error.
2When the value of the Wilcoxon test statistic is < 0.05, we reject the hypothesis that samples are from
the same population.

Long-term sediment yields calculated from °Be; data range between 45 and 930
tons km2 yr, assuming a rock density of 2.7 g/cm®. Modern sediment yields calculated
from hydrology station data vary between 21 and 2,879 tons km2yr* (Schmidt et al., 2011)
(Table DR9). There is a statistically significant difference between the modern and long
term sediment yields when considering the population of all stations (n =21,t=-94.5, p <
0.01). In most sites that we compared (15 out of 21), the contemporary sediment yield is
higher than the long-term (ratios range from 1.5 to 24). There are four sites that have a
higher long-term sediment yield (ratios range from 0.3 to 0.8), and two sites where the
sediment yields are similar (ratios from 0.9 to 1.2). Although there are no statistically
significant differences in sediment yield ratios between samples in all four basins (F= 1.7,
p= 0.21), the ratios in the Salween river are higher than in other basins (average ratio =
9.1), although this is due to one high ratio of 24. If the ratio of 24 is removed, the difference
in ratios by watershed becomes significant (F= 3.75, p= 0.04), but the results are not
statistically representative, since there are only two samples from the Salween basin.

Therefore, we keep the ratio of 24 in our analysis. Ratios from the Irrawaddy (u=1.7), and
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Mekong (u=1.7) rivers are significantly different than ratios in the Salween basin. Ratios
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in the Red (u=3.3) River basin are not significantly different from those in any other river

(Figure 3.6A).
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Erosion indices calculated from modern sediment data range between 0.2 and 5.1,
averaging 1.3 (Table DR10). There is no statistically significant difference in erosion
indices by major watershed (F= 2.68, p = 0.09). There are seven sites with an erosion index
greater than one, and six sites with erosion index below one. Five sites have an erosion
index close to one (0.8 — 1.2) (Figure 3.6B).

Discussion

Temporal replicates

The temporal variability of cosmogenic °Be concentration in river sediment has
been infrequently studied (Matmon et al., 2003; Reusser and Bierman, 2010; Lupker et al.,
2012; Granger and Riebe, 2007, Sosa Gonzalez, 2012; Cox et al., 2009) (Table 3.4). Our

work adds 44 °Ben and 59 °Be;j pairs of replicates to previously published temporal

analyses.
Table 3.4: Summarized data on previously published “Be temporal replicates
Publication Study sites Isotope analyzed Basin area (km?) Samples
Included m analysis Within error

Schaller et al., 2002 France, Netherlands 1["Be,- Not reported 14 14
Matmon et al, 2003 Great Smoky Mountams lcBe,- 330 1 1
Granger and Riebe, 2007  Fort Sage Mountains e, 0.132 1 1
Cox et al, 2009 Madagascar ’Be, 134 to 209 2 2
Reusser and Bierman, 2010 New Zealand Be,, 130 to 1560 3 2
Lupker et al, 2012 Himalayas Be, $73240 1 1
Sosa Gonzalkez, 2012 Panama B, 571059 2 2

Increased precipitation during the monsoon season increases suspended sediment
delivery and river discharge (Henck et al.,, 2010). Our paired in channel/overbank
sediments, as well as samples taken six months apart, allow us to test for differences in

sediment sourcing as a function of seasonal changes, primarily, the monsoon. Our replicate
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samples show non-systematic noise above the analytic uncertainty (Figure 3.4, Figure 3.5,
Table 3.3, Table DR8). For example, for a series of 6 nested samples along the mainstem
of the Salween River, 1 sample is within 10% for °Bem temporal replicates, while 5
samples are not. Furthermore, the sample that agrees is nested among samples that are not
within 10%. None of the samples are within 10% for 1°Be; in these nested samples. In
general, at any given site where both isotopes were measured over time, 1°Be; concentration
reproduced better than 1°Ben The agreement in both 1°Be;j and 1°Ben, concentrations of in
channel and overbank samples suggest that while the monsoon increases water discharge
and sediment delivery, it does not alter sediment sourcing in any systematic way.

Although there is no statistically significant difference between the isotopic
concentration of active channel and terrace sands, most of the samples are not within 10%
of each other. Of all our terrace replicate samples (n=11), only four have °Be;
concentrations within 10% of contemporary channel sediment. One of these terraces (CH-
040) is modern (0 + 20 *C ybp), two are about a century in age (CH-019, 115 + 15 #C
ybp; CH-038, 130 + 20 C ybp), and the other is older (CH-124, 2570 + 20 *C ybp).

Our data show poor reproducibility in samples taken roughly a decade apart. Only
one site (out of 6) shows °Bem concentrations within 10% of each other (CH-170). °Be;
concentration varies by more than 10% in all 6 sites we compared over a decadal
timeframe. We attribute these differences, at least in part, to analytical differences. The
quartz isolation and °Be;j extraction took place in two different laboratory facilities, with
slight variations in the methodological approach. The isotopic ratios were also measured

at different AMS facilities.
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Comparison between long-term and modern sediment vields

Long-term °Bei-based and contemporary sediment yields have been compared
before, with varying results (e.g., Hewawasam et al., 2003; VVanacker et al., 2007; Reusser
et al., 2015). In some cases, the landscape appears to be in a steady state, where the
contemporary and long-term sediment yields are similar (Matmon et al., 2003; Gellis et al.,
2004; Nichols et al., 2005; VVanacker et al., 2007; Cyr and Granger, 2008; Bellin et al 2012;
Nichols et al., 2014). In regions where contemporary sediment yields are lower than the
19Bej-based erosion rates, it is possible that the contemporary measurements are not
capturing stochastic events (mass wasting or extreme precipitation events), thereby
lowering the calculated contemporary sediment yield (Bierman et al., 2001; Kirchner et al.,
2001; Schaller et al., 2001; Humphreys et al., 2006). Previous work has found
contemporary sediment yields significantly higher than long-term yields in regions with a
long history of human activity, such as deforestation and intensive agriculture (Brown et
al., 1998; Clapp et al., 2000; Hewawasam et al., 2003; Bierman et al., 2005; Reusser et al.,

2014).

We find that in most sites (15 of 21), contemporary sediment yields surpass long-
term rates of sediment generation determined from *°Be; (average ratio = 3.5). This may be
a function of the relatively short period considered for contemporary sediment yield
measurements compared to '°Bej-based sediment generation rates or could be related to
human land use. The contemporary sediment yield data we used spans the years (1950s-
1980s) when deforestation was widespread across Yunnan. It is possible that this is driving

the difference we measure. Contemporary sediment yield measurements are easily biased
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by extreme events such as landslides or a high-intensity precipitation (Kirchner et al.,
2001). However, this seems unlikely in our study area as a change in monsoon intensity
would affect the entire study area. Thus, it seems more likely that agriculture and
deforestation have elevated sediment yield (e.g., Hooke, 2000). We find that the watersheds
with contemporary sediment yield, higher than long-term rates have on average 35%
agricultural land, compared to an average agricultural land use of 18% in watersheds where
the contemporary sediment yield is similar or lower than long-term erosion rates. This
suggests that using the land for agriculture can significantly increase sediment delivery.
Field observations of monocultures on steep slopes, agriculture in floodplains, in many
cases reaching the river banks, and slash and burn practices support this hypothesis (Figure
3.7). Riverbed material dredging is very common in our field area. It is possible that
scouring sediments from the river channel as a result of sand mining also increases

contemporary sediment yields.
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Figure 3.7: Field photographs documenting landuse impacts. Reforestation projects have established
monocultures along steep slopes in Yunnan (A) (site of CH-142/CH-143). Rice paddies are common in
the field area (B). Agricultural practices include slash and burn (site of CH-114) (C). River sand mining
is also common in some of the rivers we sampled (site of CH-117/CH-118) (D). Photographs by Thomas
B. Neilson and Adrian Singleton.

In addition to increasing modern sediment yield, human activity can also decrease
sediment yield. For example, dams and reservoirs trap sediment before it exits the basin,
reducing the sediment yield (Reusser et al., 2014). Dams in our study area post-date the
available sediment data (ending in 1987) (FAO, 2015). In the four basins (CH-119, CH-
121, CH-147, CH-155) where the modern sediment yield is lower than the long-term,

terraced rice paddies are a common agricultural practice. Field observations and satellite
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imagery confirm that rice paddies comprise a significant part of these four basins. We

suspect that the rice paddies are efficient sediment traps, similar to dams.

Our erosion index data also provide insight of the impact of humans on the landscape.
Although it is not statistically significant, the average percentage of agricultural land use
IS greater in basins that are exporting sediment at a faster rate than it is being produced (u
= 35% cultivated land, n = 7). The basins exporting sediment at a rate slower than it is
produced, therefore suggesting sediment storage, average 20% cultivated land (n = 7). The
difference in these rates further shows the impact of human activities on surface processes.
Because erosion indices are derived directly from sediment yield data, our EI data reflects

in part spatial trends of sediment yield.

Relationship of erosion rates to topography and climate variables

A relationship between erosion rates and topography has been found at the regional and
global scale (Portenga and Bierman, 2011). While our long-term erosion rate data show a
statistically significant relationship with slope, other topographic variables (relief and ksn)
are also strongly related to erosion rates in our dataset. Previously published studies have
found a direct relationship between ksn and erosion rates in tectonically active regions (e.g.
Safran et al., 2005; Ouimet et al., 2009; DiBiase et al., 2010; Vanacker et al., 2015). The
lack of relationship between erosion and PGA in our dataset suggest that while our study
area is tectonically active and similar to settings where ksn has been related to erosion,
tectonism is not driving the relationship between erosion and ksn. Our findings suggest that

topography is the strongest control of erosion rates in our study area.
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The effects of climate on erosion rates has been debated, with some studies finding a
strong relationship (e.g. Montgomery et al., 2001), whereas others have found a minimal
climatic control on erosion (e.g. Riebe et al., 2001). Although rainfall is significantly and
negatively related to erosion in our dataset, there is also a significant and inverse
relationship between rainfall and slope in our data (R? = 0.67, p <0.01). Similarly,
agricultural land use is significant and inversely related to erosion (R? = 0.62, p <0.01) and
to slope (R? = 0.44, p <0.01). There is also a positive relationship between agriculture and
rainfall in our dataset (R? = 0.67, p <0.01). It is likely that the co-variance between slope,
rainfall, and agriculture is driving the inverse relationships we find in our analyses.

Our results suggest that topography controls long-term rates of erosion in our study
area. Steepness of the hillslopes decreases towards the south of our study area, which is
farther from the Tibetan plateau and the active India-Eurasia plate collision zone. Southerly
parts of our field area have more monsoon-related precipitation. Agriculture is more
prevalent in the less steep portions of the landscape, where it is wetter. However, erosion
is faster on steeper, drier hillslopes in our study area.

Conclusions

We present an extensive dataset of replicate samples, spanning time intervals of 6
months to millennia, in which we measured °Be concentrations. While there is noise
beyond analytical uncertainty, the central tendencies are similar in most comparisons,
suggesting that the time-invariant °Be concentration is a valid assumption. Furthermore,

our data show that the monsoon does not alter sediment sourcing to rivers in Yunnan. This
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is a very important finding for cosmogenic studies, since we now know that the time of the
year when rivers are sampled does not change the resulting numbers.

Our analysis of denudation in Yunnan shows that topography exerts a first-order
control on long-term erosion rates, while climate exerts a second-order control. Human
alterations of the landscape have increased contemporary sediment yields in our study area,
compared to long-term erosion rates. Erosion index data from our basins further
demonstrate human impacts on surface processes, since most sites show a net export of
meteoric 1°Be. Background, long-term erosion rates presented here serve as a benchmark
to compare future alterations of the landscape. These background erosion rate data are
important because many dams, which will undoubtedly change sediment yields, are
proposed or already operating in the Salween and Mekong Rivers (Lu and Siew, 2006;
Magee, 2006).
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Chapter 4 — Conclusion

This work presents the first compilation of published long-term erosion rates in
southern and southeastern Brazil, as well as constrain the first long-term erosion rates for two
unsampled states: Rio de Janeiro and Santa Catarina. | present the biggest dataset for
cosmogenic studies in China. | test an important assumption of the method to derive long-term
erosion rates from cosmogenic measurements: the time-invariant °Be concentration
assumption.

My work presents the first cosmogenically-derived erosion rates for the Brazilian
states of Santa Catarina and Rio de Janeiro. Erosion rates, in the basins | studied, range
from 13 to 90 m/My. They are broadly consistent with cosmogenic erosion rates published
by others for southern Brazil. | also compiled all previously published cosmogenic nuclide
measurements for southern and southeastern Brazilian watersheds. This region is eroding
at a pace similar to other passive margins, but significantly slower than other tropical
watersheds where cosmogenic erosion rates have been calculated. Topography is the main
control on erosion in Brazil, with lesser influence from climate and lithology. In the
compiled Brazilian dataset, | found that basins draining the escarpment erode faster than
their counterpart basins, draining the highlands, regardless of the lithology that underlie
the basins. This finding strongly suggests that topography controls erosion in this region.

The erosion data for Santa Catarina watersheds were measured as baseline data
prior to the establishment of a Payment for Ecosystem Services (PES) program. My hope
is that my data can now be used as a benchmark to compare the effects of the management

program, but also as a quantification of the ecosystem dynamics. In order to quantify
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changes to the landscape as a function of the PES, contemporary sediment yield
measurements are needed. To the best of my knowledge, such data are not publicly
available for Brazil.

In China, | created what is the biggest cosmogenic nuclide dataset for the region,
with over 100 samples. Among the strengths of the dataset, is the vast amount of temporal
replicates to test for the (cosmogenic) method assumption of time-invariant °Be
concentration. While the central tendency in the replicate analyses is similar in most of the
timeframes we studied, there is noise beyond analytical uncertainty in our data. The
greatest discrepancy in the temporal replicates is between 2005 and 2014 samples. My
collaborators discovered an error with the original cosmogenic data (published in Henck et
al., 2011). As a result of this, the lack of correlation seen in my data is not scientifically
meaningful. Future work includes correcting these data, and re-assessing the differences in
isotopic concentration. More temporal replicate analysis work is needed, in order to put my
dataset in context. With more data, it would be possible to assess whether my dataset has
higher errors than expected, or if the samples are reproducing better than expected. Because
little work has been done on temporal replicate, I can only compare my data to studies that
have one or two replicates, which makes it hard to find trends in the datasets. Based on the
temporal replicate data, | found that the monsoon does not change sediment sourcing to the
rivers. This is a very important finding for cosmogenic studies, since we now know that
the time of the year when rivers are sampled does not change the resulting numbers.

| found erosion rates in Yunnan range from 17 and 386 m/Myr. Topography exerts

a first-order control on erosion in the watersheds | studied, with a lesser control from
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climate and no tectonic control. Slope, a topography metric, co-varies with rainfall and
agricultural land use in my dataset. This is further proof that topography is the strongest
control of erosion in this region. Perhaps the most interesting finding in this dataset is the
lack of relationship between tectonic activity and erosion. It is common for tectonic activity
to drive erosion in places where there is active tectonism. An example of this is the Panama
dataset I generated for my Master’s thesis, where tectonic activity was the strongest control
of erosion (Sosa-Gonzalez, 2012).

| found that modern sediment yields are higher than long-term yields by a factor of
as much as 24X, in most of the sites | studied. This is not a surprising finding, given the
long-history of human activity and landscape modification in Western China. However, |
find such an increase comparing long-term erosion rates to sediment yield data that dates
back to the 1960s — 1980s. I can confidently hypothesize that the sediment yields today are
at least as high as they were back then, if not higher, based on the constant changes to the
landscape, and widespread agriculture. However, sediment yields today can give the
impression of being lower, because sediments can be trapped behind dams and in rice
paddies. In order to understand which of these human activities is driving the sediment
yields, a fine-scale network of sediment monitoring is needed in this region. This network
would need to measure sediments exported from end-member basins in a watershed,
including all forested, all agriculture, all urban, and some mixed basins. This would allow
geomorphologists to understand which land uses are generating sediment, and which are

trapping it.
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A potential use of the China dataset is to serve as a benchmark to quantify future
impacts of dams. With the increase in dams and reservoirs this region will face in the next
decade (Kummu et al., 2010), having a baseline to compare changes in sediment yields will
be invaluable. For this comparison to be possible and effective, an active sediment data
monitoring program is needed. The best approach would be to have sediment yield data
from the rivers a few years prior to the dam construction, as well as data collected after the
dam is built and functioning. Ideally, this monitoring can be done long-term to examine
the effects of sediment releases from the dam. As reservoirs fill up, it is necessary to release
water, and dredge sediments in order to keep the reservoir operational.

My work in both Brazil and China has increased the number of cosmogenic samples
in tropical and subtropical watersheds. Samples from these sites have shown that
topography is the strongest control of erosion in these places, regardless of tectonic activity
in western China. Future work includes integrating my Brazilian data to the establishment
of a Payment for Ecosystem Services program. In doing so, my work would apply
geomorphology to environmental conservation, a novel approach. In China, future work
includes incorporating short-lived isotope data from my samples, measured by
undergraduate collaborators at Oberlin College. This new information, will give us an
insight of short-term surfaces processes, and allow us to compare to long-term processes.
Further work in China includes quantification of sediment yield measurements after dams
are built and operating. Comparing these new yields to our long-term data would allow us

to understand the changes on sediment exported from basins as a result of dams.
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Appendix 1 — Brazil Supplementary Material
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Figure DR1: Watersheds sampled for Salgado et al. 2006, 2007, 2008 and 2013 publications. Watersheds are shown imposed
over a Digital Elevation Model (DEM) background. DEM data from Instituto Nacional de Pesquisas Espaciais Published
sampling location and watershed delineation were confirmed with the corresponding author.
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Figure DR2: Watersheds sampled for Barreto et al. 2013, 2014 publications, imposed over a DEM. DEM
data from Instituto Nacional de Pesquisas Espaciais. Sampling location was confirmed by one of the
authors.
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Figure DR3: Watersheds sampled for Rezende et al 2013 publication. Watersheds are shown imposed over a DEM
background. DEM data from Instituto Nacional de Pesquisas Espaciais. Published sampling location and watershed
delineation were confirmed with the corresponding author.
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Figure DR4: Watersheds sampled for Cherem et al. 2012 publication. Watersheds are shown imposed over a DEM background.
DEM data from Instituto Nacional de Pesquisas Espaciais. Published sampling location does not align perfectly with the
delineated watersheds provided by the corresponding author. We adopted the author’s delineation for our analysis
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Figure DRS: Spatial distribution of erosion rates in our Rio de Janeiro watersheds. Highest erosion rates are observed
in watersheds draining the Serra do Mantiqueria (inset B). Watersheds are delineated over a Digital Elevation Model

(DEM) background. DEM data from Instituto Nacional de Pesquisas Espaciais
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Figure DR6: Spatial distribution of erosion rates measured in Santa Catarina watersheds. Watersheds are
imposed over a DEM background. DEM data from Instituto Nacional de Pesquisas Espaciais
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Appendix 3 — Brazil Sample catalog
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Field Area: Rio de Janeiro, Brazil

Collection Date: September 2011

Latitude: -22.500 Longitude: -43.019

Site description: This sample is from a watershed draining Serra dos Orgdos escarpment.
At this site, we sampled river sand (sample ID: BRA-01S) and river clasts (sample ID:
BRA-01).

BRA-02
Field Area: Rio de Janeiro, Brazil

Collection Date: September 2011

Latitude: -22.476 Longitude: -43.028
Site description: This sample is from a watershed draining Serra dos Orgaos escarpment.
At this site, we sampled river sand (sample ID: BRA-02S) and river clasts (sample ID:
BRA-02).

126



BRA-03
Field Area: Rio de Janeiro, Brazil

Collection Date: September 2011

Latitude: -22.464 Longitude: -43.016
Site description: Sample taken at a small watershed draining the Serra dos Orgaos
escarpment. We sampled river sand (BRA-03S) and clasts (BRA-03) at this site.

BRA-19

Field Area: Rio de Janeiro, Brazil

Collection Date: September 2011

Latitude: -21.498 Longitude: -42.204

Site description: Wide channel, with dense vegetation on both river banks
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BRA-20
Field Area: Rio de Janeiro, Brazil
Collection Date: September 2011
Latitude: -21.247 Longitude: -41.781
Site description:

BRA-21

Field Area: Rio de Janeiro, Brazil
Collection Date: September 2011
Latitude: -21.321 Longitude: -
41.880

Site description:
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Field Area: Rio de Janeiro, Brazil
Collection Date: September 2011

Latitude: -21.371 Longitude: -41.924
Site description:

Field Area: Santa Catarina, Brazil

Collection Date: May 2012

Latitude: -26.808 Longitude: -48.907

Site description: Narrow channel, low flow, big cobbles in the river. Banana plantations

on both sides of the river, and on the steeps slopes around the channel.
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Field Area: Santa Catarina, Brazil

Collection Date: May 2012

Latitude: -26.775 Longitude: -48.992

Site description: narrow channel, with multiple boulders and cobbles on the channel.
Redish sediment.

-~

BRA-43

Field Area: Santa Catarina, Brazil

Collection Date: May 2012

Latitude: -26.779 Longitude: -48.993

Site description: Narrow, boulder dominated channel. Some vegetation on both sides
(vines). We sampled under a bridge.
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BRA-44
Field Area: Santa Catarina, Brazil
Collection Date: May 2012
Latitude: -26.881 Longitude: -49.099
Site description: Wide channel, with fine sands on the shore and river bed

BRA-45

Field Area: Santa Catarina, Brazil

Collection Date: May 2012

Latitude: -27.061 Longitude: -49.527

Site description: Wide, deep channel, with many large boulders. Sand is buried under
boulders.
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Field Area: Santa Catarina, Brazil

Collection Date: May 2012

Latitude: -27.080 Longitude: -49.498

Site description: Wide, rocky boulder. Low water flow. Sample taken on the right bank

of the river.

BRA-47

Field Area: Santa Catarina, Brazil

Collection Date: May 2012

Latitude: -27.334 Longitude: -49.620

Site description: Sample taken at the left bank, by the collapsed bridge, not from the
active channel.
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CH-101 (IC)/-102 (OB)
Field Area: Yunnan, China
Collection Date: 1/5/2014
Latitude: 22.969 Longitude: 104.818
Site description: Station 91, in channel/overbank. Wide channel upstream of station,
downstream of sand mining, but sample from river sediments. Banana plantations, but
generally low agriculture in watershed. Cement factories in the headwaters.

CH-103 (IC)/-104(0OB)

Field Area: Yunnan, China
Collection Date: 1/5/2014

Latitude: 23.134  Longitude:
104.507

Site description: Station 90, in
channel/overbank. 2 dams upstream of
sampling site. Not sure if more down.
Deep gorge. Mostly limestone, bedrock
at sample site surrounded by terraced.
Sample on right bank. Downstream of
station but we didn't see station.
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CH-105 (IC)/-106 (OB)
Field Area: Yunnan, China

Collection Date: 1/6/2014

Latitude: 23.284 Longitude: 103.724

Site description: Station 108, in channel/overbank. Sample taken under bridge. Tiny
check dam at bridge. Fast flowing channel. Unsorted sediments. About 1 km upstream of
sampling site, there is cement block manufacturing off the river (we don't know if there is
mining on the river). There is also limestone mining off the side of the mountain on the
right bank, about 1 km upstream of the sample site.

-

CH-107 (I1C)/-108 (OB)
Field Area: Yunnan, China

Collection Date: 1/7/2014

Latitude: 22.852  Longitude: 103.580
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Site description: Station 106 in channel/overbank. Downstream of tributary, steep slopes
on both sides of the river, with agriculture going to the base of mountain (just about 50m
above river, there are tree plantations). Samples taken at a sand bar in the river that has
been mined (or is currently being mined?)

CH-109 (1C)/-110 (OB)

Field Area: Yunnan, China

Collection Date: 1/8/2014

Latitude: 23.547 Longitude: 102.073

Site description: Station 103 in channel/overbank. Steep slopes on both sides of the
river, banana plantation all the way to the river on the left bank, mostly brushes and bar
land on the right bank. About 5 km upstream there is a big mining operation in the river.
Sample taken higher upstream than GIS point (there may be a tributary coming in, before
guessed location of station).
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CH-111 (IC)/-112 (OB)

Field Area: Yunnan, China

Collection Date: 1/8/2014

Latitude: 23.545 Longitude: 102.086

Site description: 2 km downstream of previous sample (below confluence with
tributary). Wide deep channel. Wide floodplain on both banks, and steep slopes on the
mountains around. Up above on road cut there is big fluvial material with layers of
laminated fine material above, possible dam existed here? Angular limestone gravel,
everything else sub-rounded. Sample taken at tributary delta, there is no water coming
out, delta is forested (about 40 year old trees). Deep seated landslides upstream of
sampling spot. Debris-flow (old one) stops at the floodplain (tall vegetation) growing on
it, so not recent. The tributary hasn't entered the river at another point in a while. It
doesn't cross river elsewhere and delta is forested.

CH-113 (IC)
Field Area: Yunnan, China
Collection Date: 1/8/2014
Latitude: 23.352 Longitude: 101.502
Site description: Station 87, in channel. Gravel mining site. Sample taken late at night,
no pictures of the site. Collected a bulk sample to be lab-sieved. No over bank sample.
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Field Area: Yunnan, China
Collection Date: 1/9/2014
Latitude: 23.700 Longitude: 100.816

Site description: Resample CH-056. Attempted to resample CH-057 but terrace was
totally eroded away, interesting. Immediately downstream of a bridge, of on point bars
upstream. Left bank: sand and boulders. Agriculture on the left bank, road and forested
low on right bank, bananas higher.

Field Area: Yunnan, China

Collection Date: 1/9/2014

Latitude: 23.694 Longitude: 100.818

Site description: Resample of CH-058. Downstream of gravel mining and junction of
two tributaries. We are upstream of CH-058, but nothing comes in.
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CH-116 (IC)
Field Area: Yunnan, China
Collection Date: 1/9/2014
Latitude: 23.696 Longitude: 100.630
Site description: Resample of CH-043 (a bit downstream of previous GIS point).
Headwater of the west branch. Floodplain on both sides along forested slopes.

CH-117 (IC)/-118 (OB)

Field Area: Yunnan, China

Collection Date: 1/9/2014

Latitude: 23.557  Longitude: 100.710

Site description: Resample of CH-060 and CH-044. Left bank: ag field with sugar cane.
Gravel/sand mining both up and downstream, wide channel with steep slope to the right
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CH-119 (IC)/-120 (OB)

Field Area: Yunnan, China

Collection Date: 1/10/2014

Latitude: 21.846 Longitude: 100.980

Site description: Resample of CH-073 and CH-074. Wide channel with big floodplains,

samples collected at right bank. Agriculture field. Jetties structures immediately

upstream. Outlet suspected, hydrostation 2 km upstream
s e >

o i 5 :
CH-121 (IC)
Field Area: Yunnan, China

Collection Date: 1/11/2014

Latitude: 21.794 Longitude: 100.366

Site description: Resample of CH-070. High water level (higher than base flow) but low.
Large crystalline boulders on the river. Headwater stream. Left side of the bank has

agricultural fields right next to river (about 1/2 meter above the water), forested river
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banks. Moderate slopes around river (not too steep), micas (lots of), sample taken on
right bank, water relatively low (dry season)

CH-122 (IC)
Field Area: Yunnan, China
Collection Date: 1/11/2014
Latitude: 21.794 Longitude: 100.366
Site description: Resample of CH-071. Downstream of a factory (sugar cane
processing?), left bank dips into river at slight angle, small fields on the bank (~10 ft
above the water), left bank is incised (cuts through) in a terrace. Sugar cane plantations
on right bank (ranges from 5 to about 15 feet above the river)

CH-123/-124/-125

Field Area: Yunnan, China

Collection Date: 1/11/2014

| Latitude: 21.942 Longitude: 100.341

Site description: Terrace on the side of the river

(right bank) where CH-122 was collected. Terrace is

under the sugar cane field, and goes up to about 3 or 4

meters above the river. CH-123 and 124 have sand

for insitu, CH-125 is just the charcoal, no insitu. Sand

at bottom (charcoal extracted from there) from

bottom: coarse sand, reduced gray clay (also has

charcoal). Reduced gray interbedded with med. sand,

small pack of gray clay, mid-size sand, then gravel,
then clay above.
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CH-126 (OB)/-127 (IC)
Field Area: Yunnan, China
Collection Date: 1/11/2014
Latitude: 21.952 Longitude: 100.421
Site description: Resample of CH-075 and CH-076. Wide channel (turbid water).
Sample taken on left bank. Mostly flat area surrounding agricultural fields (chinese
greens, onions, lettuce) on the elf bank all the way to the river (about 20 feet above the
fields), right bank is steep and right against the wall of a bus station and houses.

1

CH-128 (OB)/-129 (IC)

Field Area: Yunnan, China

Collection Date: 1/12/2014

Latitude: 22.184 Longitude: 99.222

Site description: Station 109 in channel/overbank. Upstream of town. Not sure where
station is. Left bank of channel, upstream of bridge, forested hillslopes (maybe
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plantations-rubber?) very close to Myanmar border. Unsorted sediments (very fine mud
to boulders (rounded). Upstream channel seems too big for river.

CH-130 (OB)/-131 (IC)

Field Area: Yunnan, China

Collection Date: 1/12/2014

Latitude: 22.337 Longitude: 99.575

Site description: Station 94 in channel/overbank. Station is downstream of us in town,
just upstream of bridge. Totally channelized river with small dam. We are on a point bar
below retaining wall/rip rap. Forested park on right bank, road on left bank. Sample on
left bank. Bedrock outcrops upstream and downstream. Channelization ends just
upstream of us and our sample. Channel is bedrock and forested slopes upstream.

-y

CH-132 (OB)/-133 (IC)

Field Area: Yunnan, China
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Collection Date: 1/13/2014

Latitude: 23.365 Longitude: 99.447

Site description: Station 32 in channel/overbank. Sample taken at a gravel mining
operation, but there are laminations in the sediment close to the river. We are pretty
certain that it's overbank and not material falling from mining, and debris above it.
Downstream of a big factory (we don't know what kind), moderate slopes around the
channel, the right bank comes into the channel at steep angle, and it is mostly planted
with sugar cane, left bank is the mining operation.

CH-134 (OB)/-135 (IC)
Field Area: Yunnan, China

Collection Date: 1/13/2014

Latitude: 23.677 Longitude: 99.237

Site description: Station 93 in channel/overbank. Sample taken at hydrostation but GPS
says we are 1 hr away from our sampling site. Wide channel (about 150 m wide) with a
mid-channel bar about 20 m wide and another one 10 m wide next to the right bank,
sample taken at left. Station may not be operating? Water flow is low. Steep slopes
around us, right bank looks forested with some small fields on bank. River is incising
both banks.
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CH-136 (OB)/-137 (IC)

Field Area: Yunnan, China

Collection Date: 1/13/2014

Latitude: 23.526 Longitude: 98.971

Site description: We collected two bulk samples for overbank and two for in-channel.
Sample collected at the river and overbank at the bottom of a mining operation, there is a
part that looks like it is river deposits and not mining, there is debris on it. Sample taken
below junction of a tributary with the main stem of river.
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CH-138/-139
Field Area: Yunnan, China
Collection Date: 1/13/2014
Latitude: 23.531 Longitude: 98.988
Site description: Sample taken after sunset, too dark to sieve or take notes. Two bulk
samples collected for overbank and two for in-channel. Sample collected at main stem
before junction with tributary (see previous sampling spot). There are agricultural fields
on the floodplain (as far as we could see driving by earlier, and with moonlight)

CH-140 (OB)/-141 (IC)

Field Area: Yunnan, China

Collection Date: 1/14/2014

Latitude: 24.052 Longitude: 97.975

Site description: Station 99 in channel/overbank. 20 km upstream of projected point.
Left bank of the river. Immediately adjacent to a gigantic sand mining factory, unclear
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whether our collected sample is contaminated by the factory sand pile. Right bank looks
vegetated, with clumps of sugar cane plot.

CH-142 (OB)/-143 (IC)
Field Area: Yunnan, China
Collection Date: 1/15/2014
Latitude: 24.487 Longitude: 97.726
Site description: Station 85 in channel/overbank. Wide calm channel, about 700m wide,
high quartz content on sandbars, samples collected at left bank, upstream of a dam. Wide,
flat floodplains, extending at least 50 m. Left bank vegetated; along the track were some
boulder-sized angular metamorphic rocks (carbonate and igneous in origin), right bank
looks vegetated in part, mostly terraced.
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CH-144 (OB)/-145 (IC)
Field Area: Yunnan, China
Collection Date: 1/15/2014
Latitude: 24.622 Longitude: 97.868
Site description: Station 84 in channel/overbank. Extremely wide and braided channel,
samples at left bank. Right bank has field burning when we were sampling, left bank is
barren, show signs of tillage and possibly burned as well. 20km upstream of previous
site.

CH-146 (OB)

Field Area: Yunnan, China

Collection Date: 1/16/2014

Latitude: 24.671 Longitude: 98.651

Site description: Station 100 overbank. Sample taken at the hydrostation. We think it
may still be in use. Looks a bit run down but someone made a path through the gravelly
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point bar to the river along all the stage markers. Maybe just stage in off season? Sample
directly under old (2012-12-05 out of use) bridge. At head of reservoir would probably be
submerged in rainy season and just downstream of another dam. This is the same river as
we sampled in Ruili. Left bank sample 200m wide channel (active) but only about 50m
wetted. Cannot get an in channel sample because no sand accessible. Upstream river is
calmer but pool is really deep.

CH-147 (IC)/-148 (OB)

Field Area: Yunnan, China

Collection Date: 1/16/2014

Latitude: 25.102 Longitude: 98.839

Site description: Station 15 inchannel/overbank. Right bank on fine sandy beach.
Downslope of reinforcements to protect road, but beach clearly river deposits. Deep river
but not fast flowing. Alluvial fan coming in across channel. Boulders on that side of
channel likely from fan, not from channel. River sand goes all the way to the bottom of
the concrete wall (around the big rocks). Couldn't sieve anything coarse for 500-850 or
250-850 in channel or 500-850 overbank. Note:

CH-149 (OB)/-150 (IC)
Field Area: Yunnan, China
Collection Date:
Latitude: 25.866 Longitude: 98.850
Site description: Just bulk sample collected at mining site. Sampling after sunset, dark
out, no site pictures Overbank (CH-149) collected from sand imbricated with rocks. In-
channel (CH-150) sample (bulk) collected from sand mine called "river sand"
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Field Area: Yunnan, China

Collection Date: 1/17/2014

Latitude: 25.441 Longitude: 99.286

Site description: TRR 14b resample in channel/overbank. Resample of TRR 14b, a
tributary that joins Mekong River. Nasty brown/tan colored river, big boulders in the
channel. Active mining immediately downstream. Samples (bulk) taken at left bank.
Steep slope at right bank (forested). Right by a highway.

CH-155 (IC)/-156 (OB)
Field Area: Yunnan, China
Collection Date:
Latitude: 25.418 Longitude: 100.007
Site description: Station 86 in channel/overbank. Narrow steep valley. Lots of limestone
on drive in. Downslope of dam, upstream of station. Dam releases irregularly. Sample
from bottom of dirt road at a gravel/sand mine. Confident in overbank not recycled
because below trimline for dam releases. Right bank across from dry tributary/small fan
No site pictures

150



CH-157 (IC)/-158 (OB)

Field Area: Yunnan, China

Collection Date: 1/18/2014

Latitude: 24.434 Longitude: 100.118

Site description: Station 97 in channel/overbank. Right bank, overbank collected at a
clean quartz sandy pile. **Speculate that it's from mining upstream (in channel) and
deposited last monsoon. A ton of mining upstream and downstream, and construction.
Turbid slow flowing river. Entire stretch is channelized.

CH-159 (I1C)/-160 (OB)
Field Area: Yunnan, China
Collection Date:
Latitude: 25.064 Longitude: 100.541
Site description: Station 101 in channel/overbank. Late at night. Downstream of town.
Right bank 2+bulk in overbank. Gravel mine, construction zone. Seems convincingly
overbank/in channel.
No site pictures
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CH-161 (IC)/-162 (OB)

Field Area: Yunnan, China

Collection Date: 1/20/2014

Latitude: 28.026 Longitude: 98.632

Site description: Resample TRR 9 in channel/overbank. 3+bulk bags. Beautiful site
upstream of town and very minor tributaries (dry?) Sand mine from point bar. Right
bank. Pretty sedimentary structures in overbank sand.

CH-166 (OB)/-167 (IC)

Field Area: Yunnan, China

Collection Date: 1/20/2014

Latitude: 27.583 Longitude: 98.793

Site description: Resample TRR 10 in channel/overbank. Bulk only. Probably same spot
as TRR 10. Right bank. Big channel. Bedrock. Low quartz content. Fine sands.
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CH-168/-169/-170

Field Area: Yunnan, China

Collection Date: 1/20/2014

Latitude: 27.228 Longitude: 98.892

Site description: Resample TRR11a (tributary) in channel. Resample TRR11b in
channel/overbank. CH-168 tiny tributary into Salween. Teeny tiny. CH-169, 170 are in
main stream downstream of tributary. Sample at sand mine (small). Mining sand bar. Left
bank sample at spot with road to river. Valley a little broader, no bedrock along channel.
Agriculture close to channel but not high up. Tributary sampled in channel only CH-168.

CH-171/-172
Field Area: Yunnan, China
Collection Date:
Latitude: 26.483 Longitude: 98.898
Site description: TRR 12 resample. No pictures because we were sampling in the dark.
Nice sandy beach, downhill of a construction pile of sand but collected samples are
definitely not from the construction. Downstream of a bridge. The overbank sample is a
resample of TRR12.
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